FHWA-ID-EIS-12-01-D

Safety Technical Report

Draft Environmental Impact Statement

US-95 Thorncreek Road to Moscow Project No. DHP-NH-4110(156);Key No 09294

US-95 THORNCREEK ROAD TO MOSCOW AASHTO HIGHWAY SAFETY MANUAL ANALYSIS ON ALTERNATIVES CARRIED FORWARD

DHP-NH-4110 (156) KEY # 09294

PREPARED BY
DISTRICT 2 PROJECT DEVELOPMENT ENGINEER

Curtis J. Arnzen, P.E.

Date

Table of Contents

Introduction	1
Safety Analysi	s of Existing Alignment2
Calculation Me	ethodology for Action Alternative5
Standard Pre	edictive Calculations5
Wild Animal	Crashes6
Crashes Rela	iting to Unfavorable Weather Conditions9
Crash Prediction	on Results For Proposed Alternative10
No Action Al	ternative10
Alternative I	<u></u>
Alternative (
Alternative \	N413
Summary	14
Appendix A.1 -	- Crash Data - Thorncreek Road to Moscow From 1/2002 Through 12/2011
	Crash Data – Lewiston Hill to Thorncreek Road From 10/2007 Through 12/2011
Appendix A.2 -	- Official High Crash Location List for District 2
Appendix B.1 -	- Wildlife Crossing Areas on US-95 in Latah County identified by Idaho Fish and Game
Appendix B.2 -	- Ungulate Impact Area Shown in EIS
Appendix B.3 -	- Methods to Reduce Traffic Crashes Involving Deer: What Works and What Does Not
Appendix B.4 -	- Wild Animal Crash Data on US-20 from MP 369 to MP 375.5 From 7/1/2000 Through
	3/9/2012
	Photographs of US-20 Before, After, and During the Tree Clearing Project
Appendix B.5 -	- Wild Animal Crashes on US-95 in District 2 between January 2002 and December 2011
Appendix C.1 -	- Typical Sections, AASHTO HSM Calculations, and Results For Alignment E2
Appendix C.2 –	- Typical Sections, AASHTO HSM Calculations, and Results For Alignment C3
Appendix C.3 –	Typical Sections, AASHTO HSM Calculations, and Results For Alignment W4
Appendix C.4 –	Traffic Counts for the Project Area
	And Assumed ADTs of US-95 and County Roads
Appendix D –	Thorncreek Road to Moscow Environmental Matrix Safety Analysis Alignments Carried
	Forward Dated February 15, 2011
Appendix E –	Safety Evaluation For Western Ecosystems Technology's Assessment of Potential Big
	Game Impacts Associated with Highway Alternative from Thorncreek Road to Moscow

DHP-NH-4110 (156); Key No. 9294; Thorncreek to Moscow

July 31, 2012

Introduction

This Safety Analysis is a supporting document of the Environmental Impact Statement for US-95, Thorncreek to Moscow. The Purpose and Need Statement in the Environmental Impact Statement is the following:

- Purpose The purpose of this project is to improve public safety and increase highway capacity on US 95 between Thorncreek Road and Moscow.
- Need Within the project limits, US95 does not meet current American Association of State Highway and Transportation Officials (AASHTO) Standards (widths, clear-zones, grades, and sight distance). Additional concerns include high accident locations and insufficient highway capacity.

This report will analyze the safety of the existing alignment and make an alternative recommendation based on safety. It will also quantify the safety benefit of the No Action Alternative and Alternatives E2, C3, and W4.

This report uses the First Edition (2010) of the AASHTO Highway Safety Manual (HSM) to analyze and quantify the safety benefits of each alternative. This report replaces a report shown in Appendix D called Thorncreek Road to Moscow Environmental Matrix Safety Analysis Alignments Carried Forward that was published on February 15, 2011 prior to the date the Idaho Transportation Department (ITD) District 2 received its first copies of the HSM. The HSM provides the most current and accepted knowledge and practices relating to safety management according to AASHTO and Transportation Research Board (TRB) Task forces.

The results of the calculation methods in the HSM show that Alternatives E2, C3, and W4 will be much safer than the No Action Alternative. The results of the calculation method show that Alternative E2 is the safest proposed alternative for total crashes, as well as total injury related crashes and fatalities. This result is consistent with the previous safety report shown in Appendix D. Table 1 shown below summarizes the findings of this safety analysis for 2017. At this time, 2017 is the first year a safety benefit would be anticipated after completion of the project.

Table 1: Predicted Crash I	Rate For Proposed Alternatives B	ased on HSM Calculations for 2017.
Alternative	Total Crashes Per Year	Fatal and Injury Crashes Per Year
No Action	24.8	10.5
E2	7.7	3.8
С3	10.9	4.7
W4	9.3	4.5

Safety Analysis of the Existing Alignment

Ten years of crash data on the existing alignment between MP 337.668 (Thorncreek Rd.) and MP 344.004 (Moscow) was analyzed in order to compare the safety of the existing alignment to the proposed alternatives. The crashes are shown in Appendix A.1 of this report. From January 1, 2002 through December 31, 2011, 220 crashes occurred or an average of 22.0 crashes per year. The number of crashes is higher than predicted for similar 2-way, 2-lane rural NHS Routes with similar average annual daily traffic (AADT). Using ITD's Safety Analysis base rate, approximately 14.0 crashes per year would be predicted on the existing alignment. ITD's Safety Analysis estimates that crashes occur at a base rate of 1.22 crashes per million vehicle miles for similar highways, while the actual crash rate is 1.85 crashes per million vehicle miles.

In addition to having a higher than predicted number of total crashes, the District's top three Official High Crash Locations are located within this section of highway. Statewide, the three High Crash Locations in this section of roadway are ranked within the top 13 non-interstate High Crash Locations. Appendix A.2 shows the list of High Crash Locations.

The crashes that have occurred on the existing alignment over the past 10 years appear to be random in nature and include head-on crashes, sideswipes, rear end turning, overturning, run off the road to the ditch and embankment, among other crash types. In the past 10 years, 6 fatalities have occurred in 5 crashes and 138 injuries have occurred in 220 crashes on US-95 between Thorncreek and Moscow. Two of the fatal crashes were head on collisions, one fatal crash was a sideswipe, one fatal crash was due to a motorist driving left of center into another car, and one was a pedestrian crash. The head-on crashes and sideswipe crashes are generally associated with passing maneuvers. The frequency of head-on, sideswipe, and driving left of center crash types is predicted to greatly decrease by replacing the 2-Lane roadway with a new 4-Lane roadway with a divided median. The US-95 project recently built between the top of the

DHP-NH-4110 (156); Key No. 9294; Thorncreek to Moscow

July 31, 2012

Lewiston Hill and Thorncreek Road has eliminated head-on crashes and sideswipes from cars traveling in the opposite direction since its completion in October 2007.

Approximately 40% of the existing crashes are from vehicles negotiating a curve and in the past 10 years, 14 crashes occurred with a motorist running off the road to the ditch, 19 crashes occurred with a motorist running of the road in an embankment area, and 76 crashes occurred with a motorist overturning a vehicle. The existing alignment does not meet AASHTO Standards for shoulder width, curve radius, sight distance, clear zone, and grade. Any action alternative will be designed to full AASHTO standards. The number of run off the road and overturning crashes is predicted to decrease if any action alternative is selected. The severity of the accidents is also predicted to decrease because the roadside clear zone will become more forgiving.

There are currently 66 at-grade intersections and approaches (public, commercial, residential, and field) in this 6.34 mile segment of US-95. Between 2002 and 2011, there were 22 crashes directly associated with private approaches, or intersections. The north end of the project is the most densely populated area. It has the highest number of access points and the highest number of intersection related crashes. The southern end of the project with its closely spaced approaches onto US-95, have also resulted in a high number of intersection related crashes. Currently, many approaches do not meet the ITD access control policy and contribute to intersection related conflicts. Eighteen rear-ending crashes occurred on the existing alignment in the past 10 years. Rear ending accidents are generally associated with turning traffic to and from public roads and approaches to residencies, businesses, and industry. Any of the three proposed action alignments greatly reduce at grade intersections and approaches to US-95 and future approaches would not easily be granted because Type IV Right of Way would be purchased.

Currently, 57% of the crashes on US-95 between Thorncreek Road and Moscow occur during inclement weather where the police report lists snow, rain, or fog as the weather condition and has a road surface condition of wet, snow, ice, or slush. The number of crashes occurring during inclement weather is observed to be the greatest along curves with substandard radiuses. All existing alternatives will flatten curves to the AASHTO standard for radius and super-elevation, reducing the potential for weather related crashes.

DHP-NH-4110 (156); Key No. 9294; Thorncreek to Moscow

July 31, 2012

There have been 31 wild animal crashes between Thorncreek Road and Moscow in the ten year period between January 2002 and December 2011. This is 14% of the total crashes; however, the severity of the crashes was very low, with 27 crashes being property damage only crashes and 4 being Type C Accidents (Possible Injury). The Idaho Department of Fish and Game have designated a portion of Thorncreek Road to Moscow as a wildlife crossing area.

The cost estimate for preventing a fatality is calculated every year by the FHWA. In 2010, the cost used by the Federal Highways Administration (FHWA) was \$6,053,567 per fatality. The ITD Office of Highway Safety uses the cost the FHWA establishes for preventing a fatality as a basis for determining the cost of the other crash types. The National Highway Traffic Safety (NHTS) also did a study on the costs of crashes and determined who pays for the cost of crashes. The most significant point of this study is that society at large picks up nearly 75% of all crash costs incurred by individual motor vehicle crash victims. These costs are passed on to the general public through insurance premiums, taxes, direct out-of-pocket payments for goods and services, and increased charges for medical care. Economic values can be calculated for accidents between Thorncreek Road and Moscow. The results of these values are summarized in Table 2 Below:

Table 2: Econ		Between Thorncreek Road 02 and 12/11.	and Moscow
Crash Type	Total Crashes	Cost Per Crash (2010 Values)	Total Cost per Crash Type
Fatality	5	\$6,053,567	\$30,267,835
Type A Accident (Serious)	18	\$301,473	\$5,426,514
Type B Accident (Visible)	33	\$84,441	\$2,786,553
Type C Accident (Possible)	36	\$55,972	\$2,014,992
Property Damage Only	128	\$6,480	\$829,440
		Total:	\$41,325,334

From October 1, 2007, or the date the four lane divided highway from the Top of Lewiston Hill to Thorncreek Road (MP 323.36 to MP 337.668) was completed, to December 31, 1012, 31

DHP-NH-4110 (156); Key No. 9294; Thorncreek to Moscow

July 31, 2012

injury crashes and no fatal crashes occurred on this new section of US-95, or 2.17 accidents per centerline mile. During the same time period on US-95 between Thorncreek Road and Moscow (MP 337.668 to MP 344.004), 65 injury and 3 fatal accidents occurred, or 10.7 injury crashes or fatal crashes per centerline mile.

All crash data supports the need for the construction of an action alternative and reconstruction of US-95 between Thorncreek Road and Moscow with a four lane divided highway. The No Action Alternative is not acceptable because of the observed crash history of the existing alignment and the high economic cost of all crashes between Thorncreek Road and Moscow.

Calculation Methodology for Action Alternatives

Standard Predictive Calculations

In order to calculate predicted number of crashes per year for proposed alternatives, Chapter 11-Predictive Method for Rural Multilane Highways and Chapter 12-Predictive Method for Urban and Suburban Arterials of the AASHTO Highway Safety Manual were followed. The Empirical Bayes method is not applicable since all three action alternatives are new and will be a different highway type than the existing facility.

Each of the three action alternatives has two different and distinct segments. One segment has characteristics of a rural multilane highway and the other segment has characteristics of a suburban arterial. Each segment within each alternative was modeled separately. Segments of highway that have a proposed 34 foot divided median (42' between the northbound and southbound travel lanes) and 65 mph speed limit were modeled as a rural divided multilane highway and segments of highway with five total lanes including a two-way left turn lane and a 45 mph speed limit were modeled as a suburban arterial. Typical sections for each proposed alternative are shown in Appendices C.1, C.2, and C.3. All public road intersections were also modeled within each proposed alternative. ADT projections used in the predictive calculations are for 2017, or the first year after the anticipated construction is complete. 2017 would be the first year that a safety benefit would be realized.

Spreadsheets developed by Karen Dixon, PhD Civil Engineering, from Oregon State University were used for calculations and are show in the appendix of this report. Dr. Dixon was one of the authors of the AASHTO Highway Safety Manual.

Wild Animal Crashes

The Highway Safety Manual Analysis Technique predicts some wild animal crashes within the base formulas; however, the wild animal crashes are not quantified within the formulas. The predicted crashes for each alternative generated using the HSM Manual within this report include wild animal crashes.

To satisfy concerns about wild animal crashes, the wild animal crash rate was investigated between Thorncreek Road and Moscow and wild animal crash rates within ungulate crossing areas in Latah County identified by the Idaho Department of Fish and Game in Appendix B.1. Table 3, shown below, is a list of wild animal crashes within ungulate crossing areas that have been identified by the Idaho Department of Fish and Game.

Table 3: Wild Animal Cr	ashes at Ungulate Crossing Areas From 1/1/02 to 12/31/11.	on US-95 in Latah County
Ungulate Crossing Area	Total Wild Animal Crashes	Wild Animal Crashes Per Year
Marsh Hill	34	3.4
(MP 367.1-370.1)		
Crooks Hill	14	1.4
(MP 356.0 – 359.0)		
Steakhouse Hill	48	4.8
(MP 349.7 – 352.7)		
Thorncreek to Moscow	17	1.7
(MP 340.3 – 343.3)		

Currently, 1.7 of the 3.1 wild animal crashes on the existing alignment are between Thorncreek and Moscow occur within the identified ungulate crossing area.

Approximately 1.98 miles of Alternative E2 will be through an ungulate impact area within an identified ungulate crossing area between Thorncreek Road and Moscow. The remainder of Alternative E2 and the entire C3 and W4 Alternatives are not within the ungulate impact areas. Appendix B.2 shows the ungulate impact area in relationship to the alternatives. Alternative E2 has potential to have more wild animal crashes than Alternatives C3 and W4 because of the 1.98 mile long length of Alternative E2 within the ungulate impact area; however, a wildlife crash countermeasure that clears the roadside of trees and brush will be

DHP-NH-4110 (156); Key No. 9294; Thorncreek to Moscow

July 31, 2012

constructed. The crash countermeasure is predicted to reduce the total number of wild animal crashes to a rate that is similar to the number of wild animal crashes predicted by the base rate of the Highway Safety Manual. A report included in Appendix B.3 and titled "Methods to Reduce Traffic Crashes Involving Deer: What Works and What Does Not", shows a 50% reduction in animal crashes for railway clearing. This 50% reduction was achieved with the clearing of a 40 to 60 meter strip for railway cars to avoid moose collisions. This report also acknowledges that roadside clearing may be effective, but there is limited information supporting the extent of the reduction, which is why there is no crash modification factor (CMF) available for roadside clearing.

In July 2010, ITD District 6 completed a project to widen the roadside clear width from 30 feet to 60 feet from the roadway along US-20 between MP 369 and 375.5. For the ten years prior to the clearing project 37 wild animal crashes occurred or 3.7 crashes per year. Since the project only 1 wild animal crash has occurred, or about 0.6 crashes per year. This is about an 85% reduction in wild animal crashes so far. The data for this ITD project is shown in Appendix B.4. It should be noted that only 1 year and 8 months have passed since the completion of this project; however, the roadside clearing used on this project has substantially reduced wild animal crashes in the short time period.

For the proposed Thorncreek Road to Moscow Project, a minimum of 240' of Right-of-Way is estimated; however, in most areas the topography of the land will require a larger purchase of land that is estimated to be up to about 600' wide. The proposed Right-of-Way will be cleared of trees and brush providing a clear area that ranges from a minimum of 75' to maximum of about 330' from the edge of traveled way to the nearest possible brush or trees. The wide clear area is predicted to reduce the wild animal crash potential on all proposed alternatives.

The severity of wild animal crashes is observed to be lower than other crash types. Because the severity of wild animal crashes is low, the current State Highway Safety Plan does not devote an emphasis area for wild animal crashes. Table 4, shown below, shows that the total economic cost of wild animal crashes within the existing Thorncreek to Moscow Alignment from 1/1/02 to 12/31/11 is \$398,848. This value is less than 1% of the total economic costs on the existing alignment between Thorncreek Road and Moscow during the same time period.

DHP-NH-4110 (156); Key No. 9294; Thorncreek to Moscow

July 31, 2012

Table 4: Economic C			the Existing Throncre	eek to Moscow
	, 	nt From 1/1/02 to 1		
Crash Types	Number	Percentage of	Cost of Crash Type	Total Cost
		Total		
Fatalities	0	0%	\$6,053,567	\$0
Type A Accidents	0	0%	\$301,473	\$0
Type B Accidents	0	0%	\$84,441	\$0
Type C Accidents	4	12.9%	\$55,972	\$223,888
Property Damage Only	27	87.1%	\$6,480	\$174,960
Total	31	100%		\$398,848

Existing animal crash data is used to estimate the percentage of the predicted wild animal crashes that will result in fatalities or injury related crashes. In the past 10 years, 428 wild animal crashes have occurred on US-95 in District 2. The crash data is shown in Appendix B.5. Of the 428 wild animal crashes in District 2, no fatalities were observed, 3 Type A Accidents (Serious) were observed, and 7 Type B Accidents (Visible) were observed. The results of the wild animal crashes are summarized in Table 5 below. The conclusion shown in Table 5 is that wild animal crashes usually do not cause severe crashes or fatalities. Less than 1 percent of the total wild animal crashes along US-95 in District 2 during the past 10 years have resulted in a fatality or serious injury. About 91% of the wild animal crashes along US-95 in District 2 during the past 10 years were crashes involving property damage only.

I .		-	2 From 1/2002 Throug	h 12/2011
From	1/1/02 to 12/31	./11 and Their Rela	ted Economic Costs.	
Crash Types	Total Number	Percentage of Total	Cost of Crash Type	Total Cost
Fatalities	0	0%	\$6,053,567	\$0
Type A Accidents	3	0.7%	\$301,473	\$904,419
Type B Accidents	7	1.6%	\$84,441	\$591,087
Type C Accidents	30	7.0%	\$55,972	\$1,679,160
Property Damage Only	388	90.6%	\$6,480	\$2,514,24 0
Total	428	100%		\$5,688,906

DHP-NH-4110 (156); Key No. 9294; Thorncreek to Moscow

July 31, 2012

All data used for prediction of wild animal crashes is based on crashes that have been reported to the Idaho State Police. Many wild animal crashes are not reported to the police because the result of the collision is not significant and does not include an injury or significant property damage. Unreported wild animal crashes are not a primary ITD safety concern, since they do not increase the number crashes with injury and the property damage is generally not significant.

In conclusion, wild animal crashes should not be a dominant factor in selecting an alternative. Wild animal crashes have been observed to have low severity and low economic costs relative to the total amount of economic costs due to crashes and because it is predicted that the total number of wild animal crashes is not significantly greater for any of the alternatives. Alternative E2 may have more wild animal crash potential than Alternatives C3 and W4 because it is within an ungulate impact area; however, roadside clearing will reduce the wild animal crash potential. Wild animal crash rates are predicted to be similar to the wild animal crash rates that the base formulas of the HSM predict.

Crashes Relating to Unfavorable Weather Conditions

Approximately 57% percent of crashes during the past 10 years occur during inclement weather where the police report lists snow, rain, or fog as the weather condition and has a road surface condition of wet, snow, ice, or slush. Therefore, the ITD commissioned Dr. Russell Qualls, Idaho State Climatologist and a Registered Professional Engineer, to study the weather patterns in the study area and make recommendations on proposed alternatives based on weather conditions. His original report titled "Final Report for Weather Analysis of Proposed Realignments of U.S. Highway 95, Thorncreek Road to Moscow" stated that there were three distinct climate types in the project study area. The report indicated that Alternative W4 would have colder temperatures and be more susceptible to frost; however, Alternative E2 and C3 would have greater precipitation than W4. Dr. Qualls suggested that due to insignificant differences between weather in the corridors, that weather should not be a dominant factor in selecting one alternative over the other. For this report, all three alternatives are treated equally and no crash modification factors or calibration factors are applied to any of the alternatives for weather related crashes.

DHP-NH-4110 (156); Key No. 9294; Thorncreek to Moscow

July 31, 2012

Crash Prediction Results for Proposed Alternatives

No Action Alternative

The existing alignment had 220 total crashes and 92 fatal and injury related crashes for the 10 year period from January 1, 2002 through December 31, 2011.

As AADTs between Thorncreek Road and Moscow grow and the two lane highway approaches its capacity, passing opportunities will decrease and crashes on US-95 are expected to increase. The frequency of crashes is predicted to increase at the same rate as the growth rate, or at 2% per year. By 2017, the frequency of crashes on the No Action Alternative is predicted to be 24.8 total crashes and 10.5 fatal and injury related crashes per year if no improvements are made. Increasing actual crash data for the existing alignment with a growth rate is a reasonable projection of crashes for the No Action Alternative.

DHP-NH-4110 (156); Key No. 9294; Thorncreek to Moscow

July 31, 2012

Alternative E2

Alternative E2 is predicted to have the fewest crashes of the three action alternatives and the No Action Alternative. Alternative E2 is the shortest alternative, has the fewest county road intersections, and has the fewest commercial and residential approaches. These factors all reduce the predicted crash rate. A grade separation is assumed at Eid Road due to the topography of the land and the turning movements in and out of the trailer park.

Alternative E2 may have more wild animal crash potential than the Alternatives C3 and W4 because 1.98 miles of E2 are within an ungulate impact area; however, the roadside clearing crash countermeasure will reduce the wild animal crash potential and wild animal crash severity is generally low with less than 1% of wild animal crashes resulting in a fatality or serious injury.

Calculations for predicted crashes were done using spreadsheets developed by Dr. Karen Dixon, one of the authors of the HSM. All supporting spreadsheets and typical sections for crash prediction are shown in Appendix C.1. Table 6, shown below, summarizes the predicted crashes for Alternative E2.

Table 6: I	HSM Crash Results for Alter	rnative E2.						
	Total Crashes Per Year	Fatal and Injury Crashes Per Year						
Rural Divided Multilane Segment	6.1	3.3						
Suburban Segment	0.9	0.3						
South Old US-95 Intersection	0.3	0.1						
North Old US-95 Intersection	0.4	0.1						
Total	7.7	3.8						

DHP-NH-4110 (156); Key No. 9294; Thorncreek to Moscow

July 31, 2012

Alternative C3

Alternative C3 is predicted to be the least safe action alternative. It has the longest five lane suburban section with a two-way left turning lane of the three action alternatives. Crashes are predicted at a rate of 3.4 crashes per centerline mile for the file lane suburban section while the rural four lane divided section has a predicted rate of 1.1 crashes per mile. Alternative C3 also has the most residential and commercial approaches of the three alternatives. The numerous residential and commercial approaches result in greater numbers of predicted crashes due to vehicles turning on and off of US-95. Five at-grade intersections at Eid Road, Clyde Road, Cameron Road, North Old US-95, and South Old US-95 must be constructed to accommodate local traffic and crashes associated with the additional county road intersections are predicted.

A grade separation is currently assumed at Zeitler Road. If it is later decided that a grade separation is not warranted at this location, the total crashes and fatal and injury crashes will increase slightly. All supporting spreadsheets and typical sections for crash prediction are shown in Appendix C.2. Table 7, shown below, summarizes the predicted crashes for Alternative C3.

Table 7: H	ISM Crash Results for Alter	rnative C3.
	Total Crashes Per Year	Fatal and Injury Crashes Per Year
Rural Divided Multilane Segment	4.9	2.7
Suburban Segment	4.8	1.5
South Old US-95 Intersection	0.3	0.1
Eid Road Intersection	0.3	0.1
Clyde Road Intersection	0.2	0.1
Cameron Road Intersection	0.2	0.1
North Old US-95 Intersection	0.2	0.1
Total	10.9	4.7

DHP-NH-4110 (156); Key No. 9294; Thorncreek to Moscow

July 31, 2012

Alternative W4

Alternative W4 is predicted to have more crashes than Alternative E2, but is predicted to have fewer crashes than Alternative C3. Alternative W4 is the longest proposed action alternative, and has four proposed county road intersections. A grade separation at Snow Road is assumed due to the topography of the land in relation to Snow Road.

All supporting spreadsheets and typical sections for crash prediction are shown in Appendix C.3. Table 8, shown below, summarizes the predicted crashes for Alternative W4.

Table 8:	HSM Crash Results for Alte	rnative W4.
	Total Crashes Per Year	Fatal and Injury Crashes Per Year
Rural Multilane Segment	6.9	3.8
Suburban Segment	1.1	0.3
South Old US-95 Intersection	0.3	0.1
Eid Road Intersection	0.3	0.1
Jacksha Intersection	0.3	0.1
North Old US-95 Intersection	0.4	0.1
Total	9.3	4.5

DHP-NH-4110 (156); Key No. 9294; Thorncreek to Moscow

July 31, 2012

Summary

The First Edition of the AASHTO Highway Safety Manual (2010) was used to calculate predicted crash rates for the three different alternatives carried forward on the Thorncreek to Moscow project. AASHTO and TRB Task forces recognize that that the Highway Safety Manual is the most accepted and current document that provides knowledge and practices relating to safety evaluation and management. The manual was developed as a tool for crash analysis and estimation. The following table summarizes the calculations based on the First Edition of the AASHTO Highway Safety Manual:

Table 9: Predicted Cr	ash Rate For Proposed Alternativ	ves Based on HSM Calculations.
Alternative	Total Crashes Per Year	Fatal and injury Crashes Per Year
No Action	24.8	10.5
E2	7.7	3.8
C3	10.9	4.7
W4	9.3	4.5

Calculations from the AASHTO Highway Safety Manual show that all alternatives are predicted to be safer than the No Action Alternative and eliminate three High Crash Locations. In fact, Alternative E2 is predicted to have about 69% fewer crashes than the No Action Alternative. Constructing any action alternative is predicted to significantly reduce fatalities and the different crash types.

Calculations show that Alternative E2 is predicted to be safer than both Alternatives C3 and W4, both in total crashes, and fatal and high severity crashes. The following are the reasons that Alternative E2 is predicted to be the safest proposed alternative:

- It is the shortest alternative.
- It has the fewest public road intersections.
- It has the fewest residential and commercial approaches.

Alternative E2 may have more wild animal crash potential than Alternatives C3 and W4; however, wild animal crash potential should not be a dominant factor in selecting an alternative based on safety because wild animal crash severity is generally low with less than 1% of wild animal crashes resulting in a fatality or serious injury and very low economic costs associated with the wild animal crashes compared to the total economic costs of all crashes.

DHP-NH-4110 (156); Key No. 9294; Thorncreek to Moscow

July 31, 2012

Also, roadside clearing is predicted to reduce the wild animal crash potential. Wild animal crash potential does not outweigh the other safety benefits of Alternative E2.

Alternative C3 is calculated to be the least safe alternative in total crashes as well as fatal and injury crashes. Alternative C3 has five public road intersections, the most residential and commercial approaches, and the longest suburban section. The characteristics of Alternative C3 create turning traffic across US-95, leading to an increase in the predicted number of crashes.

Alternative W4 is predicted to have more crashes than Alternative E2 because it is the longest alternative, and it has four public road intersections verses Alternative E2's 2 public road intersections.

In conclusion, the Purpose and Need Statement in the Environmental Impact Statement is the following:

- Purpose The purpose of this project is to improve public safety and increase highway capacity on US 95 between Thorncreek Road and Moscow.
- Need Within the project limits, US95 does not meet current American Association of State Highway and Transportation Officials (AASHTO) Standards (widths, clear-zones, grades, and sight distance). Additional concerns include high accident locations and insufficient highway capacity.

Alternative E2 is predicted to be the safest alternative and it is predicted to be safer than the No Action Alternative by about 69%. From a safety perspective, Alternative E2 satisfies the Purpose and Need Statement to a greater extent than Alternatives C3 and W4 and is the recommended alternative because it has the lowest predicted crash rate. The reason it has the lowest predicted crash rate is because it is the shortest alternative, has the fewest public road intersections, and has the fewest approaches.

Appendix A.1 Crash Data

Thorncreek Road to Moscow Crash Data From 1/02 through 12/11

Lewiston Hill to Thorncreek Road Crash Data From 10/07 through 12/11

All Accidents on US-95 between 337.668 to 344.004 from 01/01/02 and 12/31/11

Total Crashes: 220 Total Units: 220 Total People: 220 Fatalities: 6 Injuries: 138

	\neg	$\overline{}$	$\overline{}$	Т		Т		T	1	Т —	T	T	Т	Т	$\overline{}$		1			1	T		Т	
17	17	17	16	15	14	Ħ	12	E.	F	Ħ	5	മ	\perp	00	7	7	on .	un	u	4	ω	2	,	*
338.100	338,100	338.100	338.100	338,100	338.100	338.100	338.100	338,100	338,100	338.100	338,056	338.038	338.012	338,012	337,973	337.973	337.900	337.897	397.897	337.800	337,800	337,700	337,689	MP
ଘୁ	Ę.	el/SUV	el/SUV	Pickup/Van/Pan el/SUV	Car	Car	el/SUV	₽	Car	el/SUV	Car	Pickup/Van/Pan el/SUV	ğ	Car	Pickup/Yan/Pan el/SUV	Car	Pickup/Van/Pan el/SUV	Car	Pickup/Van/Pan el/SUV	Car	Car	Pickup/Van/Pan el/SUV	Pickup/Van/Pan ei/SUV	Vehicle Type
Negotiating Curve Descending	Negotiating Curve Descending	Negotiating Curve	Going Straight	Negotiating Curva	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Slowing in Traffic	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Oriver Action
	<u> </u>	Descending	Ascending	Descending	Descending	Ascending	Descending	Descending	Ascending	Ascending	Descending	Ascending		Descending		Descending	1 .	Descending S	Descending S	Ascending	Ascending	Descending S		Lane Direction
S Head-On	S Opposite	N Head-On	N Overtum	Animal - S Domestic	S Overturn	S Överturn	N Opposite	Side Swip S Opposite	N Rear-End	N Rear-End	S Anim	N Overturn	S Angle	N Angle	s Anim	s Anim	S Overturn	S Rear-End	S Rear-End	N Fence	N Ditch	S Overtum	N Overturn	
Ρ̈́	Opposite	Ģ	lt m	nal -	turn	turn	Side Swipe Opposite	Side Swipe Opposite	End	End	Animal - Wild	tun .	l s		Animal - Wild	Animal - Wild	turn	ind.	E .			T T	E	Event 1
Nonjunction	Nonjunction	Nonjunction	NonJunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	NonJunction	Nonjunction	Nonjunction	Nonjunction	Driveway/Alle y/Parking Lot Related	Driveway/Alle y/Parking Lot Related	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Junction
		On Roadway	Roadside or Sidewalk	On Roadway	Right Shoulder	Left Shoulder	Outside Right-Of-Way		On Roadway		On Roadway	Roadside or Sidewalk		On Roadway	On Roadway	On Roadway	Roadside or Sidewalk		On Roadway	Roadsíde or Sidewalk	Roadside or Sidewalk	Roadside or Sidewalk	Right Shoulder	Event Relation To Road
None	None	Inattention	Speed Too Fast For Canditions	None	Inattention	None	None	None	Inattention	None	None	Speed Too Fast For Conditions	None	Drave Left of Center	None	None	Asleep, Drowsy, Fatigued	None	Inattantion	None	Tire Defect	None	Other	Contributing Circumstance 1
None	None	Asleep, Drowsy, Fatigued	None	None	None	Speed Too Fast For Conditions	None	None	Following Too Close	None	None	None	None	Drug Impaired	None	None	Overcorrected	None	Following Top Close	Inattention	Inattention	None	None	Contributing Circumstance 2
		None	None	None	None	None		None		None	None	None		None		None	None	None		Nane	Nane	None	None	Road Condition
		Clear	Snow	Cloudy	Cloudy	Clear		Cloudy		Cloudy	Clear	Cloudy		Snow		Clear	Cloudy	Clear		Car	Fog	Cloudy	Snow	Weather
		Dry	ICB	Wet	Py	Dry		Snow		Ce	ργ	ice	-	Snow		Dry	Wet	Dηγ		Dīy	Wet	ica .	Slush	Surfac
		Day	Day	Dark, No Street Lights	Day	Dark, No Street Lights		Dark, No Street Lights		Day	Dark, No Street Lights	Dark, No Street Lights		Dark, No Street Lights		Dark, No Street Lights	Day	Day		Day	Day	Dark, No Street Lights	Day	Light
0	0	o.	0	0	0	0	0	0	0	-	0	0	0		0	0	0	0	0	٥	0	0	0	Fatal
a .	0	ίν	0	0	0	r	0	2	0	0	0	Þ	0	4	0	0	ı	1	0	0	N	6	a	injury
		Monday	Saturday	Thursday	Monday	Tuesday		Thursday		Sunday	Monday	Tuesday		Friday		Friday	Wednesday	Thursday		Saturday	Tuesday	Friday	Wednesday	Day
3/1/2010	3/1/2010			10/16/2008	4	8/19/2003		2/22/2007		12/4/2005	9/15/2008	4/6/2010	1/7/2011					9/4/2008	9/4/2008			3/28/2008	11/30/2005	AccidentDate
A Inlury Accident	A Injury Accident	A Injury Accident	Property Dmg Report	Property Drng Report	Property Dmg Report	B Injury Accident	B injury Accident	B Injury Accident	Property Dmg Report	Property Drug Report	Property Dmg Report	Cinjury Accident	Fatal Accident	Fatal Accident	Property Dmg Report	Property Dmg Report	B Injury Accident	C Injury Accident	C Injury Accident	Property Dmg Report	A Injury Accident	Property Dmg Report	Property Dmg Report	Severity

8	39	S	37	37	36	8	35	42	w w	32	22	33	29	28	27	26	25	25	24	23	23	22	21	20	19	18
338.800	338.800	338.700	338,700	338.700	338.700	338.700	338.700	338.500	338.500	338,500	338,500	338.400	338,400	338,300	338.300	338,300	338.300	338,300	338,200	338.200	338.200	338.200	338,200	338.200	338.130	338,100
Pickup/Van/Pan el/SUV	Car	el/SUV	el/SUV	Car	el/SUV	ı	el/SUV	Pickup Pickup (Van /Pan	el/SUV	el/SUV	Pickup/Van/Pan el/SUV	SUV/Crossover	<u>a</u>	Š	Pickup/Van/Pan el/SUV	el/SUV	Pickup/Van/Pan el/SUV	el/SUV	C _a r	el/SUV	el/SUV	Pickup/Van/Pan el/5UV	Pickup/Van/Pan el/SUV	el/SUV	G.	ଦ୍ର
Going Straight	Going Straight	Negotiating Curve Descending	Negotiating Curve Descending	Going Straight	Negotiating Curve	Merging	Merging	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Negotiating Curve	Negotiating Curve Descending	Negotiating Curve Descending	Going Straight	Going Straight	Going Straight	Negotiating Curve	Negotiating Curve
Ascending	Dascending	Descending	Descending	Descending	Descending	Descending	Descending	Descending	Descending	Ascending	Descending	Descending	Ascending	Ascending	Ascending	Ascending	Descending	Descending	Descending	Descending	Descending	Descending	Ascending	Descending	Descending	Ascending
z	S An	S S	N N	S Si	. S	25 25	N 18	2 2		Z Q	δ.	2	8	δ	2	모	Z E	S He	SEW	오	Z Q	S A	N Ditch	2 Q	δ.	2
	Animal - Wild	Guardrall End	Opposite	Opposite Opposite	Overturn	Same	Same	Overturn	Guardrail Face	Overturn	Overturn	Overturn	Overturn	Overturn	Overturn	Ditch	Head-On	Head-On	Embankment	Side Swipe Opposite	Overturn	Animal - Wild	K.	Overturn	Overturn	Animal - Wild
	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction
	On Roadway	Roadside or Sidewalk	Left Shoulder		Right Shoulder	On Roadway		Left Shoulder	Right Shoulder	On Roadway	Right Shoulder	Left Shoulder	Roadside or Sidewalk	Left Shoulder	Outside Right-Of-Way	Roadside or Sidewalk	On Roadway		Roadside or Sidewalk		On Roadway	On Roadway	Roadside or Sidewalk	Left Shoulder	Roadside or Sidewalk	On Roadway
	None	Speed Too Fast For Conditions	Inattention	None	Alcohol Impaired	Inattention	None	Conditions	Speed Too Fast For Conditions	Distracted IN or ON Vehicle	None	Speed Too Fast For Conditions	Alcohol Impaired	Speed Too Fast For Conditions	None	Speed Too Fast For Conditions	None	None	Asleep, Drowsy, Fatigued	None	Asleep, Drowsy, Fatigued	None	None	Speed Too Fast For Conditions	Inattention	None
	None	None	None	None	None	Other	None	None	None	Overcorrected	None	None	inattention	Drave Left of Center	None	None	None	None	None	None	Drove Left of Center	None	None	Following Too Close	None	None
:	None	None		None	None		None	None	None	None	None	Nane	None	None	Other	None	None		None		None	None	None		None	None
1	Cloudy	Cloudy		Clear	Cloudy	-	Clear	Clear	Snaw	Cloudy	Cloudy	Clear	Clear	Snow	Snow	Cloudy	Snow		Clear		Clear	Clear	Snow	Clear	Clear	Cloudy
	Dry	Snow		ice .	Dry		Dry	8	Snow	Dry	<u>\$</u>	8	Βγ	Siush	Snow	Wous	Snow		Dγ		Dry	Dry	ice .	GE .	Ŋ	Dy
Dark, No	Dark, No Street Lights	Dark, Street Lights On		Dawn or Dusk	Day		Day	Dawn or Dusk	Day	Day	Dark, No Street Lights	Dawn or Dusk	Dark, No Street Lights	Day	Dark, No Street Lights	Day	Dark, No Street Lights		Day		Day	Dark, No Street Lights	Dark, No Street Lights	Day	Dark, No Street Lights	Dark, No Street Lights
-	0		0	0 2	0	0	0	0	0	0	0	0	D L	0	0	0	0 3	0	0 1	0	0 2	0 2	0	0 1	0	0
<u>.</u>		Σ.		~	S.				S.	ĸ	S		27	N.			S.		S		~	=	T'	IZ .	×	~
	Monday	Saturday	i	Monday	Saturday		Thursday	Thursday	Saturday	Saturday	Sunday	Saturday	Friday	Saturday	Saturday	Tuesday	Saturday		Sunday		Monday	Thursday	Friday	Monday	Wednesday	Monday
	10/15/2007	12/11/2010	2/1/2010	2/1/2010	10/24/2009	8/14/2008	8/14/2008	4/7/2011	12/12/2009	9/14/2002	3/23/2003	2/5/2011	5/12/2006	3/19/2011	1/10/2009	1/21/2003	12/22/2007	12/22/2007	4/17/2011	4/27/2009	4/27/2009	10/25/2007	2/23/2007	11/27/2006	10/1/2003	10/25/2010
9	Property Dmg Report	C Injury Accident	A Injury Accident	A Injury Accident	B Injury Accident	Property Dmg Report	Property Drng Report	Property Dmg Report	Property Dmg Report	A Injury Accident	Property Ding Report	Property Ding Report	B Injury Accident	Property Dmg Report	Property Drng Report	Property Dmg Report	A Injury Accident	A Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	Property Dmg Report	A Injury Accident	B Injury Accident	C Injury Accident

66	8	64	8	62	61	g	3	59	Çī Os	57	92	55	¥	ន	52	51	50	49	48	47	46	45	4	43	42	4
339.200	339.200	339,200	339.120	339.100	339.100	337,100	386 100	339.100	339.100	339.100	339.100	339.094	339.020	339.020	338.991	338.990	338.981	338.981	338.981	338.972	338.928	338.900	338.900	338.818	338.800	338,800
el/SUV	Car Can / Can	Car	Pickup/Van/Pan el/SUV	Motorcycle	el/SUV	Pickup/Van/Pan	?	el/SUV	<u> </u>	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	el/SUV	Tires	<u>।</u>	Car	Ω ₁	Car	Car	ei/SUV	Pickup/Van/Pan el/SUV	Сат	Pickup/Van/Pan el/SUV	el/SUV	el/SUV	Car Dickin Man / Dan	el/SUV
Going Straight	Negotiating Curve	Negotiating Curve Ascending	Going Straight	Negotiating Curve	Going Straight	Außleute Bulos		Negotiating Curve	Negotiating Curve Descending	Negotiating Curve Ascending	Negotiating Curve Ascending	Going Straight	Negotiating Curve Descending	Negotiating Curve Ascending	Going Straight	Negotiating Curve	Going Straight	Negotiating Curve	Going Straight	Going Straight	Negotiating Curve Ascending	Passing	Going Straight	Going Straight	Going Straight	Negotiating Curve Ascending
Descending	Descending	Ascending	Ascending	Descending	Ascending	Descending	ï	Descending	Descending		Ascending	Ascending		Ascending	Ascending	Descending	Ascending	Ascending	Ascending	Ascending	Ascending	Ascending	Ascending	Ascending	Descending	Ascending
Sop	2 0	Z Q	Z Q	s	S En	2		S	S Tree	Z Er	Z Š	N Er	s en	오 요	Z A	Z Er	z A	2	2	δ N	S S	S Ditch	2 Q	e e	S An	N Su
Opposite	Overtum	Overturn	Overtum	Guardrail Face	Embankment	Guardrail Face	•	Guardrail Face		Embankment	Animal - Wild	Embankment	Guardrail End	Other Fixed Object	Animal - Wild	Embankment	Animai - Wild	Overturn	Overturn	Overturn	Overturn	Ē	Overturn	Guardrail Face	Animai - Wild	Traffic Sign Support
Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction		Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction
	Left Shoulder	Unknown	Right Shoulder	Right Shoulder	Left Shoulder	Roadside or Sidewalk	1	Right Shoulder	Right Shoulder	Left Shoulder	On Roadway	Right Shoulder	Right Shoulder	Left Shoulder	On Roadway	Left Shoulder	On Roadway	Roadside or Sidewalk	Left Shoulder	Outside Right-Of-Way	Roadside or Sidewalk	Roadside or Sidewalk	Roadside or Sidewalk	Right Shoulder	On Roadway	Roadside or Sidewalk
None	None	Other	Speed Too Fast For Conditions	Other	Conditions	Conditions	Speed Too Fast For	None	None	Speed Too Fast For Conditions	None	None	Speed Too Fast For Conditions	None	None	Speed Too Fast For Conditions	None	Speed Too Fast For Conditions	None	Speed Too Fast For Conditions	Inattention	Speed Too Fast For Conditions	Conditions	Inattention	None	Speed Too Fast For Conditions
None	None	None	None	Inattention	None	Drove Left of Canter		Speed Too Fast For Conditions	Speed Too Fast For Conditions	None	None	Speed Too Fast For Conditions	None	None	None	None	Other	None	None	None	Overcorrected	Other	None	None	None	None
	None	None	None	None	None	None		None	None	None	None	None	None	None	None	None	None	None	None	Nane	None	None	None	None	None	None
	Clear	Clear	Snow	Cloudy	Clear	Winds	Severe Cross	Snow	Snow	Wous	Clear	Rain	Cloudy	Cloudy	Cloudy	Snow	Clear	Cloudy	Clear	Clear	Clear	Snow	Cloudy	Clear	Clear	Clear
	ice	Snow	Snow	Dry	ĝ	Slush		Snow	Snow	lce	Dη	Show	<u>e</u>	Wet	P	ice	ργ	ਨੂੰ	<u>E</u>	<u>=</u>	Pγ	Snow	ice	ş	ργ	Ice
	Day	Day	Dark, No Street Lights	Day	Dusk	Day		Day	Dark, No Street Lights	Dark, No Street Lights	Day	Day	Day	Dark, No Street Lights	Dark, No Street Lights	Dark, No Street Lights	Dark, No Street Lights	Dark, No Street Lights	Dawn or Dusk	Dark, No Street Lights	Day	Dark, No Street Lights	Day	Day	Day	Day
0	Q	0	0	0	0	°		0	0	٥	ō	0	0	0	0	O	0	0	0	o ·	ó	0	0	0	ò	0
0	0	1	-	F	•	2		0	בן	0	0	0	0	0	0	0	0	0	0	12	300	0	0	0	0	٥
	Saturday	Saturday	Wednesday	Thursday	Saturday	Wednesday		Saturday	Tuesday	Sunday	Thursday	Sunday	Monday	Friday	Sunday	Sunday	Thursday	Wednesday	Sunday	Monday	Tuesday	Wednesday	Tuesday	Saturday	Friday	Thursday
3/26/2007	11/18/2006	2/2/2002	12/10/2003	4/24/2003	2/22/2003	2/6/2008		12/22/2007	12/25/2007	12/9/2007	7/5/2007	12/2/2007	12/29/2008	2/4/2005	10/9/2011	11/21/2010	5/8/2008	3/19/2008	1/1/2006	12/10/2007	8/28/2007	3/3/2004	1/15/2008	5/31/2008	7/16/2010	1/28/2010
Property Dmg Report	Property Dmg Report	Cinjury Accident	Property Dmg Report	A Injury Accident	Report Drug	Cinjury Accident	-	Property Dmg Report	A Injury Accident	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	B Injury Accident	C Injury Accident	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Drug Report	Property Drug Report

O0 00	88	87	86	85	80	83	82	82	8	79	78	77	76	75	74	73	2	71	70	70	69	68	67	6 6
	339.600	339.500	339.500	339.500	339.500	339.500	339.500	339,400	339,400	339,300	339.300	339.250	339.200	339.200	339.200	339.200	339,200	339.200	339.200	339.200	339,200	339.200	339.200	339.200
	Pickup	Pickup	el/SUV	Pickup/Van/Pan el/SUV	합	Car	Car	Pickup/Van/Pan el/SUV	Car	Car	Car	Car	Car	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/5UV	Pickup/Van/Pan el/SUV	Car	Truck - 2 Axle/6 Tires	Tractor - 1 Trailer	Trailer	Car	Car	Car	Car
	Passing	Going Straight	Going Straight	Negotiating Curve	Negotiating Curve	Going Straight	Negotiating Curve		Negotiating Curve	Negotiating Curve	Negotiating Curve Ascending	Negotiating Curve Ascending	Negotiating Curve Descending	Negotiating Curve Ascending	Going Straight	Going Straight	Negotiating Curve	Going Straight	Negotiating Curve Descending	Negotiating Curve	Negotiating Curve	Negotiating Curve	Negotiating Curva Descending	Negotiating Curve
	Ascending	Descending	Descending	Descending	Ascending	Ascending	Ascending	Descending	Descending	Ascending					Descending	Ascending	Descending	Ascending		Descending	Descending	Ascending		Descending
S.	Z &	S	Z	2	S S	Z A	S	S	2 9	2 9	S	2	2 C	z Q	S	<u>د</u>	2 Q	Q	S SIG	용성	် S	S O	S Ditch	N Sid
Same Direction	Same Direction Turning	Overturn	Animai - Wild	Overturn	Embankment	Animal - Wild	Overtum	Ditch	Overturn	Overturn	Ditch	Overturn	Concrete Traffic Barrier	Overturn	Guardrall Face	Guardrail Face	Overturn	Overturn	Side Swipe Opposite	Opposite	Guardrail Face	Overturn	ich I	Side Swipe Opposite
-	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction
	Roadside or Sidewalk	Right Shoulder	On Roadway	Roadside or Sidewalk	Roadside or Sidewalk	On Roadway	Left Shoulder	Right Shoulder	Left Shoulder	Outside Right-Of-Way	Left Shoulder	Roadside or Sidewalk	Left Shoulder	Right Shoulder	Right Shoulder	Right Shoulder	Left Shoulder	Roadside or Sidewalk		On Roadway	Left Shoulder	Right Shoulder	Outside Right-Of-Way	On Roadway
	Improper Overtaking	Speed Too Fast For Conditions	Other	None	None	None	None	Speed Too Fast For Conditions	Drove Left of Center	None	Speed Too Fast For Conditions	Inattention	None	Alcohol Impaired	Other	Speed Too Fast For Conditions	None	Speed Too Fast For Conditions	None	None	None	None	Alcohol Impaired	Drave Laft of Center
•	None	None	None	None	Speed Too Fast For Conditions	None	None	None	Other Vehicle Defect	None	None	None	Drove Left of Center	Speed Too Fast For Conditions	None	None	Overcorrected	Inattention	None	Conditions	Drave Left of Center	Speed Top Fast For Conditions	Overcorrected	Speed Too Fast For Conditions
		None	None	None	None	None	Grave/Seal	None	None	None	None	None	None		None	None	None	Poor Pavement Markings		None	None	None	None	None
<u> </u>		Clear	Cloudy	Snow	Snow	Clear	Clear	Cloudy	Cloudy	Clear	Snow	Claudy	Clear	Snow	Sleet/Hall	Snow	Clear	t		Snow	Clear	Cloudy	Clear	Cloudy
_		ice.	ργ	Snow	Snow	Dry	Py	Wet	Wet	8	lce	Dry	ice .	Snow	<u>s</u>	Snow	θη	<u>e</u>		Snow	Ργ	<u>e</u>	Dry	Ce Ce
'		Day	Dark, Street Lights Off		Dark, No Street Lights	Dark, No Street Lights	Dawn or Dusk	Day	Day	Dawn or	Day	Dark, No Street Lights	Day	Dark, No Street Lights	Dawn or Dusk	Dark, No Street Lights	Dark, No Street Lights	Day		Day	Day	Dark, No Street Lights	Dark, No Street Lights	Dark, No Street Lights
'	0	0	0	0	0	0	0	0	٥	0	0	0	0	ö	0	0	Q	0	0	0	0	0	0	0
	0	0	0	0	0	0	12	Þ	0	0	0	1-	0	p.	0	0	حر	2	0	0	•	2	0	0
1		Saturday	Saturday	Sunday	Monday	Saturday	Thursday	Saturday	Tuesday	Sunday	Wednesday	Thursday	Saturday	Sunday	Saturday	Saturday	Sunday	Wednesday		Tuesday	Sunday	Saturday	Friday	Monday
	10/27/2011	1/8/2011	8/15/2009	12/21/2008	1/14/2008	11/19/2005	8/4/2005	10/16/2004	5/10/2005	11/8/2009	12/31/2003	3/24/2005	12/4/2010	11/21/2010	1/9/2010	1/10/2009	12/26/2004	1/7/2004	1/6/2004	1/6/2004	2/2/2003	12/1/2007	4/13/2007	3/26/2007
Property Dmg	Property Ding Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Cinjury Accident	B Injury Accident	Property Dmg Report	Property Dmg Report	Property Ding Report	C Injury Accident	Property Drug Report	B Injury Accident	Property Dmg Report	Property Dmg Report	B Injury Accident	B Injury Accident	Property Dmg Report	Property Dmg Report	Report Dmg	B Injury Accident	Property Dmg Report	Property Dmg Report

109	108	107	107	106	105	105	104	103	102	102	101	101	100	99	98	97	96	95	94	23	92	92	92	91	90	8	89
340.500	340,438	340.425	340.425	340.400	340.350	340.350	340.300	340.300	340,300	340.300	340.250	340.250	340.100	340,027	340.000	339.900	339.850	339.800	339.731	339.700	339.620	339.620	339.620	339.620	339.620	339.620	339,620
Car	Car	Ç	Car	Pickup/Van/Pan el/SUV	<u> </u>	Car	Car Car	Q	Pickup/Yan/Pan el/SUV	2	Car	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup	G	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Car	el/SUV	Pickup/Van/Pan el/SUV	el/SUV	Car	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV
Negotiating Curve Ascending	Going Straight	Negotiating Curve Ascending	Negotiating Curve Ascending	Negotiating Curve	Turning Right	Negotiating Curve	Going Straight	Turning Left	Stopped in Traffic	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Turning Left	Going Straight	Turning Right	Slowing in Traffic	Going Straight	Going Straight	Going Straight	Turning Left	Passing
Ascending	Ascending	Ascending	Ascending	Descending	Descending		Descending	Descending	Ascending	Ascending	Ascending	Ascending	Descending	Descending	Ascending	Descending	Ascending	Ascending		Ø.	Ascending	Ascending	Ascending	Descending	Ascending	Descending	Descending
z P	S	2	S	5 Ar	S Z	S TL	S Ar	S Ar	N Re	≥ Re	S He	Z E	2 9	S Ot	z Z Q	2 Q	Z A	Z A	S En	S Tra	고 교	N Re	Z Re	Z	S S	Z S	yO s
Animai - Wild	Overturn	Opposite	Side Swipe Opposite	Animai - Wild	Rear-End Turning	Rear-End Turning	Animal - Wild	Animal - Wild	Rear-End	Rear-End	Head-On	Head-On	Overturn	Other	Other Object Not Fixed	rertum	Animal - Wild	Animal - Wild	Embankment	Traffic Sign Support	Rear-End Turning	Rear-End	Rear-End	Embankment	Overturn	Same Direction Turning	Overturn
Nonjunction	Nonjunction	Nonjunction	Nonjunction	In Intersection	In Intersection	in intersection	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Intersection Related	Intersection Related	Intersection Related	Nonjunction	Nonjunction	In Intersection	In Intersection
On Roadway	Left Shoulder		On Roadway	On Roadway			On Roadway	On Roadway		On Roadway	On Roadway		Roadside or Sidewalk	On Roadway	On Roadway	Off Roadway-Location Unknown	On Roadway	On Roadway	Left Shoulder	Right Shoulder			On Roadway	Roadside or Sidewalk	Roadside or Sidewalk		On Roadway
None	None	None	None	None	None	Inattention	None	None	None	None	Vehicle	None	Drave Left of Center	None	None	Other	None	None	None	None	None	None	Inattention	None	None	None	Inattention
None	Distracted IN or ON Vehicle	None	None	None	None	None	Nane	None	None	None	Drove Left of Center	None	inattention	None	None	None	None	Other	None	None	None	None	None	None	None	None	None
None	None		None	None		None	None	None		None	None		None	None	None	None	None	None	None	Other			None	None	None		None
Cloudy	Cloudy		Snow	Clear		Clear	Clear	Cloudy	_	Cloudy	Clear		Cloudy	Clear	Cloudy	Rain	Clear	Cloudy	Clear	Rain			Cloudy	Clear	Clear		Clear
Wet	Dry		Snow	Dry		Dη	Dry	ρηγ		Wet	Dry		\$	Dry	Dry	Wet	Dry	Wet	ice	Wet			Py	<u>ç</u>	8		ρη
Day	Day		Day	Dark, No Street Lights		Day	Dark, No Street Lights	Dark, No Street Lights		Day	Day		Dawn or Dusk	Day	Day	Dark, No Street Lights	Dark, No Street Lights	Dark, No Street Lights	Day	Day			Day	Day	Day		Day
5	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0	-	0	0	0	0	٥	O.
0	0	0	0	ō	0	1	0	0	0	0	2	0	P-		ō	2	0	P	0	0	0	0	0	2	1 4	0	-4
Tuesday	Friday		Friday	Wadnesday		Monday	Friday	Monday		Monday	Wednesday		Friday	Tuesday	Friday	Wednesday	Saturday	Saturday	Sunday	Sunday			Tuesday	Wednesday	Thursday		Thursday
7/8/2003	2/18/2005	12/12/2003	12/12/2003	2/18/2009	9/15/2003	9/15/2003	3/12/2004	3/25/2002	10/31/2005	10/31/2005	1/24/2007	1/24/2007	12/14/2007	5/26/2009	3/26/2004	11/12/2008	4/9/2011	10/1/2005	12/12/2004	6/5/2005	2/2/2010	2/2/2010	2/2/2010	1/30/2008	12/13/2007	5/31/2007	5/31/2007
Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	C Injury Accident	C Injury Accident	Property Dmg Report	Property Dmg Report	Property Drng Report	Property Dmg Report	B injury Accident	B Injury Accident	Cinjury Accident	Property Dmg Report	Property Drng Report	B injury Accident	Property Drng Report	C Injury Accident	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	A Injury Accident	C Injury Accident	Cinjury Accident	C Injury Accident

132	131	130	129	128	127	126	125	124	123	122	121	120	1119	118	117	116	116	115	115	114	113	113	11.2	112	H	110
340.981	340.981	340.976	340.955	340.914	340.900	340.900	340.900	340.900	340.819	340.800	340.800	340.800	340.800	340.800	340.700	340.600	340.600	340.600	340.600	340.600	340.520	340.520	340.500	340.500	340.500	340.500
Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Car	el/SUV	el/SUV	Tractor - 1 Trailer Pirkus/Van/Pan	el/SUV	Car	Pickup/Van/Pan el/SUV	el/SUV	Car	el/SUV	Car	Pickup/Van/Pan el/SUV	Q.	Car	Ç _i	Car	Car	Pickup/Van/Pan el/SUV	Car	Car	Car	el/SUV		Car	Car
Golng Straight	Negotiating Curve	Negotiating Curve Ascending	Negotiating Curve Descending	Going Straight	Going Straight	Negotiating Curve Descending	Negotiating Curve Ascending	Negotiating Curve	Negotlating Curve Descending	Negotiating Curve Descending	Negotiating Curve Ascending	Negotiating Curve Descending	Negotiating Curve Ascending	Negotiating Curve	Negotiating Curve Descending	Negotiating Curve Descending	Negotiating Curve Descending	Negotiating Curve	Negotiating Curve	Negotiating Curve Descending	Negotiating Curve Ascending	Negotiating Curva	Negotiating Curve	Avoiding Vehicle, Pedestrian, Pedalcycle	Negotiating Curve	Going Straight
Ascending	Descending		Descending	Descending	Descending			Ascending]					Descending			Г.	Descending	Descending			Ascending	Descending	Descending	Descending	Descending
2 - 2 -	ς Q	S Tree	Z	S	o S	s A	S	S O	S Tree	P C	Z Q	S Err	S S	S De	S Tree	S Sign	S S	S Same	Side S Same	S O	N He	S He	N He	S He	S S	S An
Overturn	Overturn		Embankment	Ditch	Overturn	Animal - Wild	Embankment	Overturn	3e	Other Fixed Object	Overturn	Embankment	Overturn	Delineator Post	8	Side Swipe Opposite	Side Swipe Opposite	Side Swipe Same	Side Swipe Same	ertum	Head-On	Head-On	Head-On	Head-On	Overturn	Animal - Wild
Nonfunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Non/unction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	NonJunction	Nonjunction	Nonjunction
Roadside or Sidewalk	Outside Right-Of-Way	Left Shoulder	Left Shoulder	Roadside or Sidewalk	Right Shoulder	On Roadway	Left Shoulder	Left Shoulder	Right Shoulder	Left Shoulder	Roadside or Sidewalk	Right Shoulder	Roadside or Sidewalk	Roadside or Sidewalk	Roadside or Sidewalk	On Roadway			On Roadway	Right Shoulder		On Roadway	On Roadway		Roadside or Sidewalk	On Roadway
Speed Too Fast For	None	Exceeded Posted Speed	Overcorrected	Too Slow for Traffic	Other	None	None	Overcorrected	Speed Too Fast For Conditions	Speed Too Fast For Conditions	Speed Too Fast For Conditions	Speed Too Fast For Conditions	None	None	Inattention	None	Speed Too Fast For Conditions	None	None	Overcorrected	None	Drove Laft of Center	Asleep, Drowsy, Fatigued	None	Speed Too Fast For Conditions	None
	None	Alcohol (mpaired	Drove Left of Center	None	Inattention	None	None	Drave Left of Center	None	None	Overcorrected	None	Alcohol Impaired	None	Speed Too Fast For Conditions	None	Alcohol Impaired	None	None	Overcorrected	None	Asleep, Drowsy, Fatigued	Drove Left of Center	None	None	None
N	None	None	None	None	None	None	None	Loose Gravel/Seal Coat	None	None	High/Low Shoulder	None	None	None	None		None		None	None		None	None	:	Gravel/Seat Coart	None
	Snow	Claudy	Cloudy	Snow	Cloudy	Cloudy	Fog	Fog	Cloudy	Clear	Cloudy	Clear	Cloudy	Clear	Snow		Cloudy		Cloudy	Cloudy		Clear	Clear		Snow	Clear
	Slush	Dry	ice	Snow	δ	ργ	ᅙ	8	Slush	<u> </u>	<u>e</u>	ice	Ργ	ργ	<u>c</u>		Slush		Slush	Dη		Dıy	ργ	-	Wet	ργ
	No Lights	Dawn or Dusk		Day	Dark, No Street Lights	Day	Day			Dark, No Street Lights			Dark, No Street Lights	Day	Day		Day			Day		Dark, No Street Lights	Day			Dark, No Street Lights
	0	0 1	0 2	0	0	0	0	0	0	0	3	0	0 1	0	0 1	0	2	0		0	0	2	1 4	0	0	0 0
-	Monday	Wednesday	Tuesday	Thursday	Monday	Monday	Thursday	Sunday	Tuesday	Saturday	Saturday	Wednesday	Thursday	Saturday	Saturday		Friday		Friday	Tuesday		Sunday	Sunday		Thursday	Thursday
	2/3/2003	5/28/2008	11/25/2003	3/7/2002	11/10/2008	4/14/2008	12/13/2007	12/4/2005	11/25/2003	1/22/2011	11/14/2009	1/28/2009	2/28/2008	3/1/2003	12/22/2007	3/7/2003	3/7/2003	3/7/2003	3/7/2003	2/28/2006	7/14/2002	7/14/2002	6/27/2010	6/27/2010	3/5/2009	1/29/2009
Property Dmg	Property Ding	A Injury Accident	B injury Accident	Property Dmg Report	C Injury Accident	Property Ding Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	C Injury Accident	Property Dmg Report	A Injury Accident	Property Dmg Report	B Injury Accident	Fatal Accident	Fatal Accident	C Injury Accident	C Injury Accident	Property Dmg Report	A Injury Accident	A Injury Accident	Fatal Accident	Fatal Accident	Property Dmg Report	Property Dmg Report

153 341.317	153 341.	153 341,317	152 341.317	151 341.300	150 341.200		150 341.200		148 341.112	147 341.100	147 341.100	146 341.100	145 341.100	144 341.100	143 341.100	142 341.100	141 341.046		- 1	139 941.009	138 341,009	138 341.009	137 341.009	137 341.009	136 341.009	136 341.009	135 341.000	134 340.996	-
Pickup/Van/Pan .317 el/SUV	341.317 Car	.317 Car	Pickup/Van/Pan 317 el/SUV	.300 el/SUV	\perp		Ц		Pickup/Van/Pan	.100 Car	Pickup/Van/Pan 100 el/SUV	Pickup/Van/Pan 100 el/SUV	ļ		1_		┸			Pickup/Van/Pan	Pickup/Van/Pan	009 Car	Pickup/Van/Pan	009 Car	Pickup/Yan/Pan 009 el/SUV	009 Car	Pickup/Van/Pan 000 el/SUV	996 Car	,
	-	Goin		_	+-	Walk	Going	Going		Goin		-	-	-	_	-	-	_	\rightarrow			Nego	· ·	Going	-	Going		Negot	
Turning Right	Going Straight	Going Straight	Going Straight	Negotlating Curve			Ц		Negotiating Curve J		Going Straight	Negotiating Curve	Going Straight	Negotiating Curve Ascending	Going Straight	Going Straight /	Going Straight L	Tall Crimeric		Negotiating Curve	Parked Vehicle [Negotiating Curve D	Turning Left [Going Straight E	Turning Left [Going Straight C	Negotiating Curve	Negotiating Curve A	
Ascending	Ascending	Ascending	Descending	Descending	Descending		Н		Ascending		Descending	Ascending	Ascending	- 1	Ascending	Ascending	Descending	Consumant of	٩	Ascending	Descending	Descending 5	Descending	Descending	Descending	Descending	Descending	Ascending	
E Angle	N Angle	N Angle	S Utili	Sup	₩ Ped		S Ped		 	5 Hea		N Tree	S Tree	N Emb	N Emb	5 Ove	S Ove	4		OVer	NE Park		S Real	S Rear	S Rear	S Rear	S Dittch	N Ditch	
			Utility Pole	Support				Mild	Overturn		Head-On I			Embankment P	Embankment	Overtum	Overturn		ent	Overturn	Parked Car F	Parked Car	Rear-End I	Rear-End P	Rear-End II	Rear-End R			
In Intersection On Roadway	In Intersection	In Intersection	Intersection Related	Nonjunction	Nonjunction		l		Nonfunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nanjunction	Nonjunction	Nonjunction	┸	Intersection		Nonjunction	Intersection Related	Intersection Related	Intersection Related	Intersection Related	In Intersection	Intersection Related		Nonjunction	
On Roadway			Right Shoulder	Right Shoulder			On Roadway	On Roadway	Outside Right-Of-Way		On Roadway	Roadside or Sidewalk	Left Shoulder	Right Shoulder	Roadside or Sidewalk	Left Shoulder	Right Shoulder	Contract of City Contract	- 1	Right Shoulder		On Roadway		On Roadway		On Roadway	Right Shoulder	Unknown	The state of the s
Drove Left of Center	None	None	None	Conditions	None		None	None	Speed Too Fast For	None	Speed Too Fast For Conditions	Speed Too Fast For Conditions	None	None	None	Conditions	Following Too Close		Distracted IN or ON	Speed Too Fast For Conditions	Drove Left of Center	None	None	Vision Obstruction	None	None	None	Other	
None	None	None	None	None	None		None	None	Non	None	Drove Left of Center	None	Speed Too Fast For Conditions	None	inattention	None	None	III BOOK III BOOK	Inattention	None	None	None	None	None	None	Fallowing Tao Close	None	None	
		None	Nane	None				None	2		None		Other	None	None	None	None	1000	Z G	None	None		None			None	None	None	
		Clear	Clear	Snow				Clear	O D D		wons	Cloudy	Snow	Cloudy	Clear	Sleet/Hall	Cloudy	Cien	Class	WonS	Snow	(A.D. and A.D. and A.	Cloudy			Clear	Snow	Rain	
-		Dıy	Dηγ	<u>e</u>	├-			D _I V	3		Snow	ica e	टु	ice	ce	8	ΔΔ	5	Ž	<u> </u>	Snow		Wet	-		ργ	o	Wet	
		Dark, No Street Lights	Dark, No Street Lights	Day	!			Day	Dark, No		Dark, No Street Lights	Dawn or Dusk	Dark, No Street Lights	Lights Off	Dusk Street	Lights Off	Day	Day	Dav	Dark, No Street Lights	Dark, No Street Lights		Dark, No Street Lights			Day	Dark, No Street Lights	Day	
0	0	0	0	0	0		۲		-		0	0	0	P	0	-	0	•	2	0	0	0	-	0	0	0	0	0	
0	0	w	Ъ	0	0	1	9	0		o	ω	<u></u>	0	-	12	0	0	ŀ	-	0	0	-	д	0	0	2	0	-	
		Thursday	Saturday	Saturday			Friday	Wednesday			Sunday	Sunday	Saturday	Friday	Wednesday	Thursday	Friday	riiday	Friday	Saturday	Saturday		Sunday			Monday	Wednesday	Sunday	
10/4/2007	10/4/2007	10/4/2007	10/22/2005	11/27/2010	9/30/2011		9/30/2011	6/30/2010	11/27/2006	11/21/2010	11/21/2010	1/3/2010	1/24/2009	4/4/2003	1/30/2008	12/21/2006	3/16/2007	2/11/2003	a/11/2009	1/24/2009	12/13/2008	12/13/2008	3/2/2003	3/2/2003	5/14/2007	5/14/2007	1/30/2002	5/16/2004	
C Injury Accident	C Injury Accident	C Injury Accident	B Injury Accident	Property Dmg Report	Fatal Accident		Fatal Accident	Property Dmg Report	A la	8 Injury Accident	B Injury Accident	B Injury Accident	Property Dmg Report	C Injury Accident	Cinjury Accident	Report	Report	Property Drng	B Initial Accident	Property Dmg Report	Property Dmg	Property Drng Report	C Injury Accident	C Injury Accident	A injury Accident	A Injury Accident	Property Dmg Report	Report Umg	

172	171	170	Tes		158	167	167	166	166	165	164	163	162	161	160	159	159	158	158	157	156	156	155	155	155	154	154
341,900	341.900	341.900	341.50X	3	341.900	341.899	341.899	341.847	341.847	341.800	341,800	341.800	341,800	341.700	341.517	341.500	341.500	341,481	341,481	341,400	341.335	341,335	341.332	341.332	341.332	341.317	341.317
el/SUV	el/SUV	Car Can Can	Anc/ia	Pickup/Van/Pan	Car	Q	Car	Car	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Ω ₁	C _a r	Car	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Car	Pickup/Van/Pan el/5UV	C _a r	Ω _I	Car	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Car	Truck - 3+ Axle	Car
Negotiating Curve Descending	Negotiating Curve	Going Straight	Polic Sulor		Going Straight	Negotiating Curve Descending	Negotiating Curve	Negotiating Curve Descending	Negotiating Curve Descending	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve Ascending	Going Straight			Turning Left	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Stowing In Traffic	Passing
Descending	Descending	Descending	Ascending		Ascending	Descending	Descending	Descending	Descending	Descending	Ascending	Descending	Descending	Ascending	Descending	Ascending	Ascending		Descending	Ascending	Descending	Descending	Descending	Descending	Descending	Ascending	Ascending
S	0	Z	2		v.	ı.	z z	οv	οv	v Q	ω O	S	z Q	S S	rs S	2 Q	z Q	z J.E	S H	S	z Þ	S ≥	S Re	0 &	N Si	2	N Re
Embankment	Overturn	Tree	Animai - Wild		Overturn	Head-On	Head-On	Side Swipe Opposite	Side Swipe Opposite	Overturn	Overturn	Animai - Wild	Overturn	Overturn	Embankment	Other Object Not Fixed	Other Object Not Fixed	Head-On Turning	Head-On Turning	Ditch	Animai - Wild	Anîmal - Wild	Rear-End	Side Swipe Opposite	Side Swipe Opposite	Rear-End	Rear-End
Nonjunction	Nonjunction	Nonjunction	Nonjunction		Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	in intersection	in Intersection
Roadside or Sidewalk	Right Shoulder	Off Roadway-Location Unknown	On Roadway		Left Shoulder		On Roadway	On Roadway		Right Shoulder	Left Shoulder	On Roadway	Left Shoulder	Outside Right-Of-Way	Outside Right-Of-Way	On Roadway	On Roadway	On Roadway		Left Shoulder	On Roadway	On Roadway	On Roadway	On Roadway			On Roadway
None	Speed Too Fast For Conditions	-		!	Asleep, Drowsy, Fatigued	None	Asleep, Drowsy, Fatigued	Alcohol Impaired	None	None	Alcoho! Impaired	None	Asleep, Drowsy, Fatigued		Overcorrected	Other	None	Inattention	None	Speed Too Fast For Conditions	None	Моля	Following Too Close	None	Vision Obstruction	None	None
None	None	None	None	:	None	None	Drove Left of Cantar	Inattention	None	None	None	None	None	Speed Too Fast For Conditions	None	None	None	None	None	None	None	None	None	None	Following Too Close	None	None
None	None	None	None	!	None		None		None	None	None	None	None	None	Flooded		None	None		None		None			None	-	None
Rain	Clear	Clear	Clear	!	Clear		Clear		Clear	Clear	Clear	Cloudy	Clear	Cloudy	Rain		Severe Crass Winds	Clear		Clear		Cloudy			Cloudy		Clear
Wet	Ice	Dry	Pγ		Dry		Dry		맛	Dry	Dry	Dry	D.V	Wet	Wet		Dry	Slush		Dry		Wet			<u> </u>		γO
Dav	Dawn or Dusk	Street Lights	Street Lights	Dark, No	Dark, No Street Lights		Day		Dark, No Street Lights	Dark, No Street Lights	Dark, No Street Lights	Dark, No Street Lights	Day	Day	Dark, No Street Lights		Day	Day		Dawn or Dusk		Dark, No Street Lights			Dark, No Street Lights		Day
0	0	-	0		0	0	Þ	-	0	0			0	0	o	0	a	0	0	0	0	0	0	0	ò	0	0
0	0	12	0		ъ	0	(J)	0	H	P .	0	0	Þ	H	Þ	0	ō	0	0	0	0	o	6	0	2	0	ь
Sunday	Friday	Saturday	Monday		Saturday		Tuesday		Saturday	Friday	Saturday	Tuesday	Wednesday	Saturday	Friday		Thursday	Tuesday		Thursday		₹riday			Monday		Tuesday
5/4/2003	4/4/2003	6/24/2006	8/15/2005		4/2/2005	8/1/2006	8/1/2006	9/11/2010	9/11/2010	4/18/2008	10/4/2003	6/10/2003	5/2/2007	10/30/2004	1/25/2002	3/18/2004	3/18/2004	3/10/2009	3/10/2009	7/7/2005	1/23/2009	1/23/2009	11/22/2010	11/22/2010	11/22/2010	7/8/2003	7/8/2003
Property Dmg	Property Dmg Report	A Injury Accident	Report	Property Dmg	B Injury Accident	Fatal Accident	Fatal Accident	C Injury Accident	C Injury Accident	B injury Accident	Property Dmg Report	Property Dmg Report	B Injury Accident	B Injury Accident	B Injury Accident	Property Drng Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	B Injury Accident	B Injury Accident	B Injury Accident	C Injury Accident	C Injury Accident

188	187	186	185	184	183	182	182	181	181	180	180	180	179	178	178	177	176	176	175	174	174	173
342,400	342.317	342.300	342.200	342.200	342,200	342,200	342.200	342.100	342.100	342.100	342.100	342,100	342.100	342.030	342.030	342,000	342.000	342.000	341.981	341.950	341.950	341,900
Pickup/Van/Pan el/SUV	el/SUV	Motorcycle	Pickup/Van/Pan el/SUV	Car	Car	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	ଦ୍ର	Pickup/Van/Pan el/SUV	Car	Pickup/Van/Pan el/SUV	Ω	Car	S.	Car
	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight		Going Straight		!	_			Going Straight		Going Straight	Negotiating Curve Descending	Turning Left	Going Straight	Going Straight	Passing	Going Straight	Negotiating Curve
Ascending	Ascending	Ascending	Ascending	Descending	Descending	Descending	Descending	Ascending			Ascending	Ascending	Descending		Descending	Descending	Descending	Descending	Descending	Descending	Descending	Ascending
z	z	z	v	Z	t/s	и		is o	z	57	z	vs -	z	S	S T	ν ,	· 7	У П В	S	2	s c	Z
Rear-End	Overturn	Overturn	Ditch	Overturn	Overturn	Rear-End Turning	Rear-End Turning	Cargo Loss/Shift Nonjunction	Other	Rear-End	Overturn	Head-On	Overturn	Rear-End Turning	Rear-End Turning	Animal - Wild	Rear-End Turning	Rear-End Turning	Animai - Wild	Side Swipe Opposite	Side Swipe Opposite	Animal - Wild
Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	At Driveway/Alle y/Parking Lot	At Driveway/Alle y/Parking Lot	Nonjunction	Nonjunction	Driveway/Alle y/Parking Lot Related	Driveway/Alle y/Parking Lot Related	Driveway/Alle y/Parking Lot Related	Nonjunction	Driveway/Alle y/Parking Lot Related	Driveway/Alle y/Parking Lot Related	Nonjunction	At Driveway/Alle y/Parking Lot	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nanjunction
On Roadway	Outside Right-Of-Way	Off Roadway-Location Unknown	Roadside or Sidewalk	Roadside or Sidewalk	Off Roadway-Location Unknown		Right Shoulder	On Roadway	On Roadway	On Roadway		On Roadway	Left Shoulder		On Roadway	On Roadway		On Roadway	On Roadway	On Roadway		On Roadway
Following Too Clase	Overcorrected	None	Speed Too Fast For Conditions	Overcorrected	Distracted IN or ON Vehicle	None	None	Other	None	None	None	None	None	None	Inattention	None	Failed to Signal	None	None	Alcohol Impaired	None	None
Inattention	None	None	Drove Left of Center	Drove Left of Center	Overcorrected	None	Following Too Close	None	None	None	None	Inattention	None	None	None	None	None	None	None	Falled to Yield	None	None
None	None	None	None	None	None	None		K	None	None		_	None		Nane	None	None		None	Nane	-	None
Rain	Cloudy	Severe Cross Winds	Cloudy	Clear	Clear	Cloudy	:		Clear	Clear			Cloudy		Cloudy	Clear	Rain		Cloudy	Snow	-	Clear
Wet	će	24	Snow	DIV	ν	Wet			ş	Dη			ice		Dy	Dry	Wet		Wet	Snow		Ργ
Day	Dawn or Dusk	Day	Dark, No Street Lights	Day	Day	Dark, No Street Lights			Day	Day			Dark, No Street Lights		Day	Dark, No Street Lights	Day			Dark, No Street Lights		Dark, No Street Lights
0	0	ō	0	0		0	0	0	0	0	0	0	O	0	0	0	o	0	0	0	٥	0
ćμ	6	p.	0	<u>-</u>	2	0	o	0	0	3	0	0	ш	o	4	0	р	0	0	0	0	0
Sunday	Tuesday	Wednesday	Friday	Saturday	Monday	Tuesday			Saturday	Friday			Friday		Sunday	Thursday	Friday		Tuesday	Saturday		Wednesday
3/24/2002	11/23/2010	9/1/2004	1/2/2004	10/19/2002	7/2/2007	2/20/2007	2/20/2007	4/28/2007	4/28/2007	5/13/2005	5/13/2005	5/13/2005	1/18/2002	10/16/2005	10/16/2005	3/12/2009	9/17/2004	9/17/2004	10/29/2002	1/19/2002	1/19/2002	3/11/2009
C Injury Accident	Property Drug Report	A Injury Accident	Property Dmg Report	A Injury Accident	Cinjury Accident	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	A Injury Accident	A Injury Accident	A Injury Accident	B Injury Accident	C Injury Accident	C Injury Accident	Property Dmg Report	Cinjury Accident	C Injury Accident	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report

220	220	219	218	218	218	217	216	216	215	215	214	213	212	211	211	210	210	209	209
344.004	344,004	343,981	343.800	343.800	343.800	343.616	343,500	343,500	343.500	343,500	343.481	343,400	343,300	343,300	343.300	343.200	343.200	343.100	343.100
Trailer	Car	Pickup/Van/Pan el/SUV	Q _a r	Pickup/Van/Pan el/SUV	Tractor - 1 Trailer	Car	el/SUV	Car	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Ω.	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Pickup/Van/Pan el/SUV	Car	Pickup/Van/Pan el/SUV	Car	Pickup/Van/Pan el/SUV
Turning Right	Turning Left	Going Straight	Stopped in Traffic Ascending	Stopped in Traffic Ascending	Going Straight	Going Straight	Going Straight	Going Straight	Turning Left	Going Straight	Going Straight	Going Straight	Going Straight	Turning Left	Going Straight	U-Tum	Going Straight	Turning Left	Going Straight
Ascending	Ascending	Descending	Ascending		Ascending	Descending	Descending	Descending	Descending	Descending	Descending	i		Descending	Descending	Descending	Descending	Descending 5	Descending
N Same	N Same	S Overturn	Side Swipe Same	Side Swipe N Same	Side Swipe N Same	S Overturn	Side Swipe S Same	Side Swipe	S Rear-End	S Rear-End	S Utility Pole	S Overturn	S Overturn	S Rear-End	S Rear-End	Same Direction S Turning	Same Direction S Turning	Side Swipe Same	Side Swipe S Same
Related	Related	Nonjunction	Driveway/Alle y/Parking Lot Related	Driveway/Alle y/Parking Lot Related	y/Parking Lot Related	Nonjunction	Nonjunction	Nonjunction	Driveway/Alle y/Parking Lot Related	At Driveway/Alla y/Parking Lot	Nonjunction	Nonjunction	Nonjunction	At Driveway/Alle y/Parking Lot	At Driveway/Alle y/Parking Lot	Nonjunction	Nonjunction	Driveway/Alle y/Parking Lot Related	Driveway/Alle y/Parking Lot Related
On Roadway		Right Shoulder			On Roadway	Outside Right-Of-Way	On Roadway			On Roadway	Roadside or Sidewalk	On Roadway	On Roadway		On Roadway	On Roadway			On Roadway
Drave Left of Center	Inattention	Speed Too Fast For Conditions	None	None	Inattention	Inattention	Improper Overtaking	Speed Too Fast For Conditions	None	None	Inattention	Other	Alcohol Impaired	None	None	Failed to Yield	None	None	Inattention
Inattention	None	None	None	None	None	None	improper Lane Change	None	None	Inattention	Overcorrected	None	Drug Impaired	None	Following Too Close	Inattention	None	None	Failed to Yield
None		None			None	None		None	None		None	None	None	None		None			None
Clear		Clear			Cloudy	Clear		Sleet/Hail	Clear		Cloudy	Cloudy	Snow	Clear		Clear			Cloudy
PV		8			Wet	Dγ		8	υγ		Snow	Dη	Wat	D _V		Dry			Wet
Day		Day			Day	Day		Day	Day		Day	Day	Dawn or Dusk	Day		Day			Day
0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	<u> </u>	0	0	12	1	14	a	0	0	0	0	0
Wednesday		Sunday			Friday	Sunday		Saturday	Wednesday		Sunday	Sunday	Wednesday	Wednesday		Saturday			Tuesday
8/24/2005	8/24/2005	1/11/2004	5/28/2004	5/28/2004	5/28/2004	9/10/2006	1/9/2010	1/9/2010	2/26/2003	2/26/2003	2/15/2004	10/30/2005	3/20/2002	5/10/2006	5/10/2006	5/31/2008	5/31/2008	4/27/2010	4/27/2010
Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Omg Report	Property Drug Report	Property Dmg Report	B Injury Accident	C Injury Accident	C Injury Accident	Property Omg Report	Property Dmg Report	C Injury Accident	B Injury Accident	B injury Accident	Property Drug Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Ding Report

All Accidents on US-95 Between MP 323.36 to 337.668 from 10/1/07 to 12/31/11

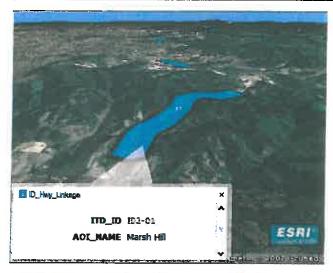
18		17	16	15	14	13	12	E	10	₆	00	7	6	u	4	ω		2	124	#
18 326.300	326.100	326.100	326.016	326,000	325.800	13 324.995	324.900	324.800	324.800	324.700	324.523	324.500	324.200	324.200	324.100	324.010	323.900	323.900	323,600	Milepost
Pickup/Van/P anel/SUV	Pickup/Van/P anel/SUV	Pickup/Van/P anel/SUV	Car	Car	Car	Pickup	Car	Pickup/Van/P anel/SUV	Car	Pickup/Van/P anel/SUV	Car	SUV/Crossov er	Car	Pickup/Van/P anel/SUV	Pickup/Van/P anel/SUV	Car	Tractor - 1 Trailer	Car	Pickup/Van/P anel/SUV	Milepost Vehicle Type
Going Straight	Going Straight	Turning Left	Negotiatin g Curve	Going Straight	Negotiatin g Curve	Negotiatin g Curve	Negotiatin g Curve	Going Straight	Passing	Negotiatin g Curve	Going Straight	Negotiatin g Curve	Going Straight	Going Straight	Negotiatin g Curve	Avolding Obstacle	Going Straight	Going Straight	Going Straight	Driver Action
Descending	Ascending	Ascending	Descending	Descending	Descending	Ascending	Ascending	Ascending	Ascending	Descending	Ascending	Descending	Ascending	Ascending	Ascending	Ascending	Descending	Descending	Descending	Lane Direction
Rear-End	Rear-End	Overturn	Overturn	Embankment	Overturn	Fence	Overturn	Animal - Wild	Embankment	Overturn	Overturn	Overturn	Animal - Wild	Overturn	Animal - Wild	Ditch	Rear-End	Rear-End	Overturn	Event 1
Intersection Related	Intersection Related	Intersection Related	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Event Relation to Junction
On Roadway	On Roadway		Roadside or Sidewalk	Right Shoulder	Roadside or Sidewalk	Private Property	Roadside or Sidewalk	On Roadway	Median	Median	Right Shoulder	Roadside or Sidewalk	On Roadway	Median	On Roadway	Left Shoulder	On Roadway		Median	Event Relation To Road
None	None	Inattention	Inattention	Inattention	Alcohol Impaired	Distracted IN or ON Vehicle	Asleep, Drowsy, Fatigued	None	Speed Too Fast For Conditions	None	Asleep, Drowsy, Fatigued	Speed Too Fast For Conditions	None	Speed Too Fast For Conditions	None	Distracted IN or ON Vehicle	Speed Too Fast For Conditions	Too Slow for Traffic	None	1
Inattention	None	Failed to Yield	Overcorrect ed	None	None	None	Inattention	None	None	None	Inattention	None	None	None	None	Overcorrect ed	None	None	Alcohol Impaired	2
None		None	None	High/Low Shoulder	None	None	None	None	None	None	None	None	None	Pavement Markings	None	None			None	Road Condition
Clear		Cloudy	Cloudy	Clear	Cloudy	Cloudy	Cloudy	Clear	Cloudy	Cloudy	Cloudy	Clear	Clear	Snow	Cloudy	Cloudy		Snow	Cloudy	Weather
Pγ		Wet	Wet	Dry	Wet	Dry	Dry	ργ	Snow	lce	Dη	ice	Dry	lce	Dιγ	Dry		Snow	Dγ	Surface
Dark, No Street Lights		Day	Dark, No Street Lights	Dark, No Street Lights	Day	Dawn or Dusk	Dark, No Street Lights	Dark, No Street Lights	Day	Day	Day	Dark, No Street Lights	Dark, No Street Lights	Dark, No Street Lights	Dark, No Street Lights	Day		Day	Day	Light
0	0	a	0	0	0	0	0	0	0	0	0	О	0	0	0	0	0	0	0	Fatalities Injuries
o	0	u	0	Ö	1	0	1	0	0	Ľ	μ.	Ö	0	0	0	11	0	0	1	Injuries
8/19/2009	11/18/2007	11/18/2007	1/29/2011	8/30/2008	9/18/2011	11/13/2011	10/3/2010	7/15/2010	1/8/2008	12/19/2008	9/2/2009	2/16/2011	7/2/2010	12/13/2008	10/25/2009	10/11/2010	12/29/2010	12/29/2010	2/16/2009	AccidentDate
Property Dmg Report	A Injury Accident	A Injury Accident	Property Dmg Report	Property Dmg Report	B Injury Accident	Property Dmg Report	C Injury Accident	Property Dmg Report	Property Dmg Report	B Injury Accident	A Injury Accident	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	C Injury Accident	Property Dmg Report	Property Dmg Report	B injury Accident	Severity

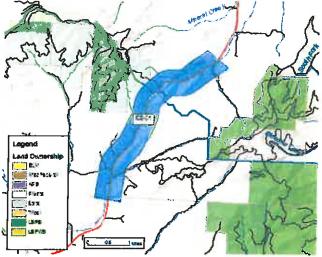
36	35	2	33	32	31	30	29	28	27	Г	26	25	24	23	Ι	22		21	20	15	
36 331.500	331.400	331.400	33 331,392	331.100	331.064	30.953	330.900	28 329.500	27 329,400	328.800	26 328.800	25 328.400	24 327.600	327.600	327.400	327.400	327.300	327.300	20 327.012	326.500	326.300
Pickup/Van/P anel/SUV	Pickup/Van/P anel/SUV	Car	Pickup/Van/P 2 anel/SUV	Car	Pickup/Van/P anel/SUV		Pickup/Van/P anel/SUV	Car	Pickup/Van/P anel/SUV) Cargo Van	Trailer		 	Pickup/Van/P anel/SUV	Gr	Pickup/Van/P anel/SUV	Car	Car	Car	Pickup/Van/P anel/SUV	Truck With Trailer
P Going Straight	P Going Straight	Negotiatin g Curve	P Going Straight	Going Straight		Going Straight	P Going Straight	Negotiatin g Curve	P Going Straight	Going Straight	Right				Going Straight	Merging	Going Straight	Turning Left	Passing	Going Straight	Going Straight
Descending	Descending	Ascending	Ascending	Descending	Ascending	Ascending	Ascending	Descending	Ascending	Ascending	Ascending	Descending	Ascending	Ascending	Ascending	Ascending	Ascending	Ascending	Ascending	Ascending	Descending
Overturn	Delineator Post	Overturn	Traffic Sign Support	Ditch	Overturn	Ditch	Overturn	Overturn	Overturn	Side Swipe Same	Same	Animal - Wild	Overturn	Animal - Domestic	Rear-End	Overturn	Rear-End	Rear-End	Embankment	Overturn	Rear-End
Nonjunction	Nonjunction	Nonjunction	In Intersection	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	y/Parking Lot Related	y/Parking Lot	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Intersection Related	Nonjunction	In intersection	Nonjunction	Intersection Related
Roadside or Sidewalk	Right Shoulder	Right Shoulder	Right n Shoulder	Roadside or Sidewalk	Right Shoulder	Roadside or Sidewalk	Right Shoulder	Left Shoulder	Roadside or Sidewalk	Other		On Roadway	Median	On Roadway	On Roadway	Roadside or Sidewalk	On Roadway		n Median	Right Shoulder	
Inattention	Speed Too Fast For Conditions	None	None	inattention	None	Inattention	None	Asleep, Drowsy, Fatigued	Speed Too Fast For Conditions	Inattention	Lane	None	Speed Too Fast For Conditions	None	Speed Too Fast For Conditions	Too Slow for Traffic	None	None	Inattention	None	None
Fast For Conditions	None	None	Fast For Conditions	None	None	IN or ON Vehicle	None	None	None	None	Turn	_	None	None	None	Failed to Yield	None	None	Improper Overtaking	None	None
None	None	None	None	None	None	None	None	None	None		None	None	None	None	-	None		None	None	None	
Clear	Cloudy	Clear	Snow	Snow	Snow	Cloudy	Snow	Clear	Cloudy		Clear	Clear	Cloudy	Cloudy		Cloudy		Snow	Clear	Cloudy	
Snow	lce	lce	Snow	ice	8	Dry	ice	Dry	Ice		Dγ	γ	<u>R</u>	Dry		Ice		Snow	Diy	ଜ	
Dark, No Street Lights	Dawn or Dusk	Day	Dark, No Street Lights	Dark, No Street Lights	Dark, No Street Lights	Day	Dark, No Street Lights	Dark, No Street Lights	Dark, No Street Lights		Day	Dark, Street Lights On	Dark, No Street Lights	Dark, No Street Lights		Day		Day	Dark, No Street Lights	Dark, No Street Lights	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u> </u>	ö	0	0	0	12	0	0	ı,	0	0	12	<u> </u>	0	0	0	0	0	0	0	0	0
3/27/2008	12/24/2010	12/29/2008	11/19/2007	12/22/2007	3/7/2009	4/2/2011	3/28/2008	6/18/2010	1/2/2009	8/29/2011	8/29/2011	8/7/2010	3/19/2011	10/30/2009	1/15/2008	1/15/2008	1/31/2008	1/31/2008	8/15/2011	1/15/2008	8/19/2009
C Injury Accident	Property Dmg Report	Property Dmg Report	Property Ding Report	Property Dmg Report	B Injury Accident	Property Dmg Report	Property Dmg Report	B Injury Accident	Property Dmg Report	C Injury Accident	C Injury Accident	B Injury Accident	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report

	55	2	53	52		51	50		49		4	L	47		46	45		44	Ι		43	42		41	40	39		38	37
336.981	336.981	336.600	335.300	334.800		334.732	334.621		334.500		48 334.500	334.160	334.160		334.017	334.003		333.400	333.200		43 333.200	42 332.900		332.200	40 332.088	331.901		331.800	37 331.800
Car	Car	Pickup/Van/P anel/SUV	Car	anel/SUV	Pickup/Van/P	Car	anel/SUV	Pickup/Van/P	Pickup		Pickup/Van/P anel/SUV	Pickup/Van/P anel/SUV	Car		Pickup/Van/P anel/SUV	anel/SUV	ņ,	anel/SUV	Pickup		Pickup	anel/SUV	ΨĮ	Pickup/Van/P anel/SUV	Pickup/Van/P anel/SUV	Pickup		Pickup	Car
Going Straight	Going Straight	Going Straight	Going Straight			Straight	g Curve	Negotiatin	Straight	Going	Going Straight	Passing	Left	Turning	Straight			Straight		Going	Straight	Straight	Going	Changing Lanes	Going Straight	Straight	Going	Going Straight	Going Straight
Descending	Descending	Descending	Descending	Ascending		Ascending	Ascending		Descending		Ascending	Descending	Descending		Descending	Descending		Descending	Descending		Descending	Descending		Ascending	Ascending	Ascending		Ascending	Ascending
Direction Turning	Direction Turning	Animal - Wild	Animal - Wild	Overturn		Overturn	Overturn	_	Overturn		Animal - Wild	Side Swipe Same	Same	Side Swine	Overturn	Animal - Wild		Overturn	Same	Side Swipe	Same	Overturn		Overturn	Overturn	Overturn		Embankment	Overturn
In Intersection	In Intersection	Nonjunction	Nonjunction	Nonjunction	ļ	Nonjunction	In Intersection		Nonjunction		Nonjunction	In intersection	In Intersection On Roadway	,	Noniunction	Nonjunction		Nonjunction	Nonjunction		Nonjunction	Nonjunction		Nonjunction	Nonjunction	Nonjunction		Nonjunction	Nonjunction
In Intersection On Roadway		On Roadway	On Roadway	Sidewalk	Roadside or	Of-Way	_		Of-Way		On Roadway		On Roadway		Median	On Roadway		Sidewalk	,		On Roadway	Left Shoulder		Location Unknown	Roadside or Sidewalk	Median		Outside Right	
None	None	None	None	For Conditions	Speed Too Fast	Inattention	Inattention		For Conditions	Speed Too Fast	None	None	Inattention		Speed Too Fast For Conditions	Obstruction	Vision	Other	None		Center	None		None	Speed Too Fast For Conditions	Overcorrected		Speed Too Fast For Conditions	None
Inattention	None	None	None	None		None	ed	Overcorrect	None		None	None	Turn	moroner	None	None		None	None	_	None	None		None	None	None		None	None
	None	None	None	None	1	None	None		None		None		None	11011	None	None		None			None	None		None	None	None		None	None
	Clear	Clear	Cloudy	Snow		Cloudy	Cloudy		Snow		Clear		Cloudy	0	work	Cloudy		Cloudy			Cloudy	Clear		Cloudy	Clear	Winds	Cross	Cloudy	Clear
	Dry	ργ	ργ	če		Wet	Ργ		Ice		Dry		Snow	7	<u> </u>	Dry		ice			Snow	8		Ċe	Ce Ce	Wet		<u>e</u>	Dry
	Day	Dark, No Street Lights	Day	Street Lights	Dark No	Street Lights	Day		Street Lights	Dark, No	Dark, No Street Lights		Day	on cer rights	Dark, No	Dusk	Dawn or	Day			Day	Day	,	Day	Day	Day	- 1	Dark, No Street Lights	Day
0	0	0	0	0	ľ	0	0		0		0	0	0)	0	i	0	0		0	0		0	0	0		0	0
0	0	0	0	ω	†	<u> </u>	12		2	1	0	0	0	1	·	0		<u> </u>	0		0	2		ь	12	Ь		0	0
10/21/2008	10/21/2008	1/9/2009	3/3/2009	12/9/2007	47 17 20 20	1/4/2010	10/1/2007		2/28/2011		8/7/2010	12/5/2009	12/5/2009	2/ 21/ 2000	3/21/2008	9/30/2009		12/30/2010	2/15/2011		2/15/2011	12/31/2007		3/7/2009	1/28/2009	3/10/2011		11/16/2011	7/5/2008
Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	C Injury Accident	of regard to secure of the	C Injury Accident	B Injury Accident		C Injury Accident		Property Dmg Report	Property Drng Report	Property Dmg Report	riopeity only report	Property Data Roport	Property Dmg Report		C Injury Accident	Property Dmg Report		Property Dmg Report	C Injury Accident	,	B injury Accident	A Injury Accident	C Injury Accident		Property Dmg Report	Property Dmg Report

	57	56
337.180 Car	337.180	337.180
	Negotiatin	Pickup/Van/P Negotiatin anel/SUV g Curve
Turning Left	Negotiatin g Curve	Negotiatin g Curve
Descending Unit	Descending	Descending
Non-Contact Unit	Overturn	Animal - Wild
In Intersection	In Intersection Sidewalk	Negotiatin g Curve Descending Animal - Wild In Intersection On Roadway None
Intersection On Roadway Inattention	9	On Roadway
Inattention	None	None
Failed to Yield	None	None
	None	None
	Cloudy	Cloudy
	Dry Day	Wet
	Day	Dark, No Street Lights
0	0	0
0	Þ	2
7/16/2011	7/16/2011	1/7/2009
B injury Accident	B Injury Accident	C Injury Accident

Appendix A.2 Official High Crash Location List for District 2




Idaho Transportation Department Office of Highway Safety

Cluster Summary Non-Interstate District Report

																									2	District	
211	207	191	162.5	161	160	147	140	128	96	92	89	71	66	57	53	51	46	43.5	40	27	17	13	6	4		Rank	
3	95	95	w	12	95	95	œ	95	12	95	95	95	12	95	œ	12	95	6	ü	12	95	95	95	95		Route	
001800	001540	001540	001800	001910	001540	001540	001870	001540	001910	001540	001540	001540	001910	001547	001870	001910	001540	001840	001800	001910	001540	001540	001540	001540		Segment Code	
7.500 - 8.000	233.090 - 234.090	369.736 - 371.236	16.550 - 17.050	38.318 - 38.818	311.920 - 312.420	367.736 - 369.236	9.312 - 10.312	303.581 - 304.081	54.489 - 54.989	318.327 - 318.662	349.863 - 351.863	294.656 - 295.156	36.818 - 37.818	.186347	17.980 - 18.480	33.325 - 33.825	282.601 - 283.101	100.550 - 101.050	15.050 - 15.550	123.508 - 127.008	344.568 - 344.760	338.668 - 339.620	337.668 - 338.168	340.620 - 341.120		de & Milepost Range	Cluster Summary Non-Interstate District Keport
0.500	1.000	1.500	0.500	0.500	0.500	1.500	1.000	0.500	0.500	0.335	2.000	0.500	1.000	0.161	0.500	0.500	0.500	0.500	0.500	1.500	0.192	0.952	0.500	0.500		Length	y Non-In
Latah	Idaho	Latah	Latah	Clearwater	Nez Perce	Latah	Latah	Nez Perce	Lewis	Nez Perce	Latah	Nez Perce	Nez Perce	Latah	Latah	Nez Perce	Lewis	Latah	Latah	Idaho	Latah	Latah	Latah	Latah		County	terstate Dis
Juliaetta					Lewiston									Moscow							Moscow					City	rrict Keport
177.5	203.5	177.5	177.5	116	177.5	154	131.5	47.5	142	35	74	116	88.5	17	88.5	88.5	116	116	116	142	19.5	36	38.5	31		Rank	∢ 🖟
201	189	165	158	168	179	127	110	164	94	125	88	32	87	134	97	66	37	77	62	28	58	42	12	7		Rank	Severity
174	144.5	149.5	78.5	119	35	130	161	101	60	103	129	163	77	24	11	71	89.5	*	19	20	48.5	25	33	23		Rank	Rate Severity Multiplie

Appendix B.1 Wildlife Crossing Areas on US-95 in Latah County Identified by Idaho Fish and Game

ITD2_ID: ID2-01

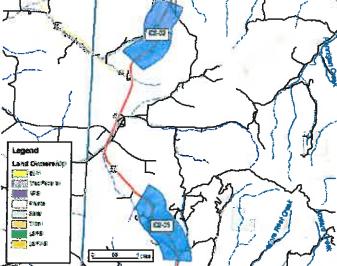
AOI_NAME: Marsh Hill PRIORITY: Moderate

SPECIES: mule deer/ elk/ moose/ black bear/ small mammals

MIG_POP: LOC_POP: Yes

SCALE:

HWY_MORT:


SEASON: Spring, Summer, Fall, Winter

ATTRACT:
AGENCIES:

ADDITIONAL COMMENTS:

Not a high kill area. Herd of elk by rest area.

ITD2_ID: ID2-02

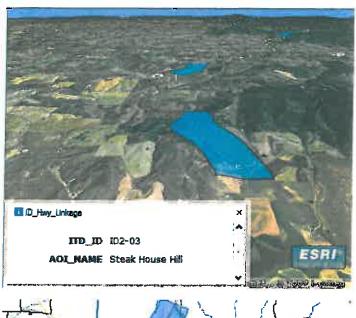
AOI_NAME: Crook's Hill

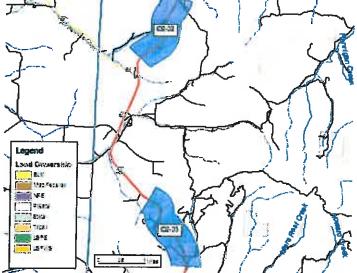
PRIORITY: Low

SPECIES: mule deer/ elk/ moose/ small mammals

MIG_POP:

LOC_POP:


SCALE:


HWY_MORT:

SEASON:

ATTRACT:

AGENCIES:

ITD2_ID: ID2-03

AOI_NAME: Steak House Hill

PRIORITY: Moderate

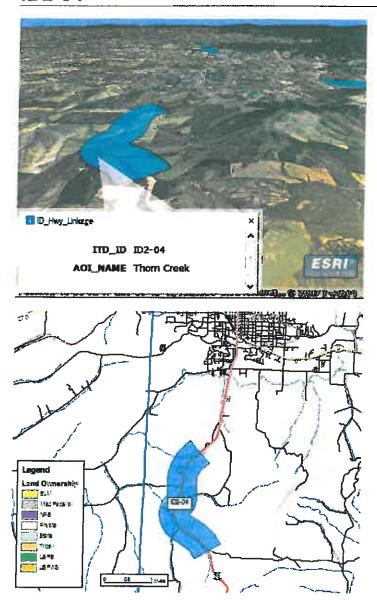
SPECIES: mule deer/ elk/ moose/ small mammals

MIG_POP:

LOC_POP:

SCALE:

HWY_MORT


SEASON:

ATTRACT:

AGENCIES:

ADDITIONAL COMMENTS:

High kill area. Potential highway safety issue.

ITD2_ID: ID2-04

AOI_NAME: Thorn Creek

PRIORITY: Low

SPECIES: mule deer/ elk/ moose/ short-eared owls/ small mammals

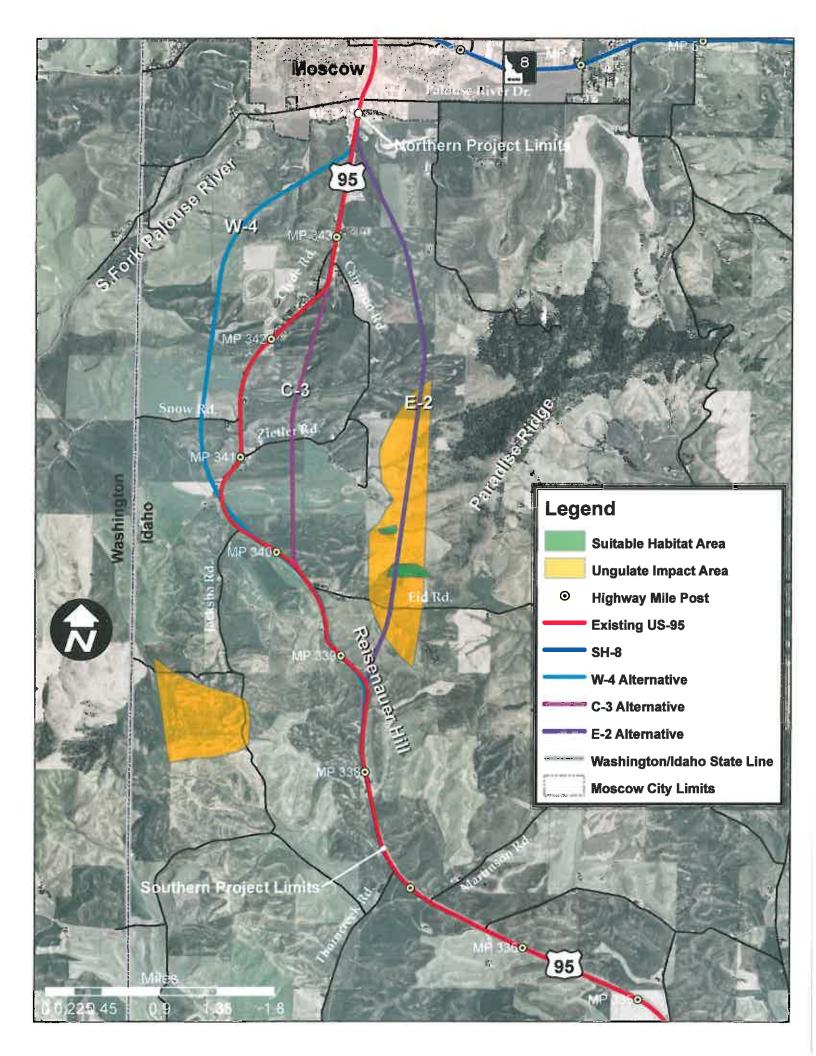
MIG_POP:

LOC_POP:

SCALE:

HWY_MORT:

SEASON:


ATTRACT: water/riparian

AGENCIES:

ADDITIONAL COMMENTS:

Moose population increasing in this area. Private ponds act as an attractant. Plans to make hwy wider and relocate.

Appendix B.2 Ungulate Impact Area

Appendix B.3

Methods to Reduce Traffic Crashes Involving Deer: What Works and What Does Not

Methods to Reduce Traffic Crashes Involving Deer: What Works and What Does Not

James H. Hedlund* Paul D. Curtis** Gwen Curtis** Allan F. Williams

October 2003

*Highway Safety North, Ithaca, NY
**Cornell University, Ithaca, NY

INSURANCE INSTITUTE FOR HIGHWAY SAFETY

1005 NORTH GLEBE ROAD ARLINGTON, VA 22201 PHONE 703/247-1500 FAX 703/247-1678 http://www.highwaysafety.org

ABSTRACT

More than 1.5 million traffic crashes involving deer are estimated to occur each year in the United States. These crashes produce at least \$1.1 billion in vehicle damage and about 150 fatalities annually. Deer-related crashes are increasing as both deer populations and vehicular travel increase. Many methods have been used in attempts to reduce deer crashes, often with little scientific foundation and limited evaluation. This paper summarizes the methods and reviews the evidence of their effectiveness and the situations in which each may be useful. The only widely accepted method with solid evidence of effectiveness is well-designed and maintained fencing, combined with underpasses or overpasses as appropriate. Herd reduction is controversial but can be effective. Deer whistles appear useless. Roadside reflectors appear to have little long-term effect, although additional well-designed evaluations are needed before firm conclusions can be drawn. Both temporary passive signs and active signs appear promising in specific situations, but considerable research is required to evaluate long-term driver response and to improve and test deer detection technology for active signs. Other methods using advanced technology require substantial additional research and evaluation.

INTRODUCTION

Deer and motor vehicles do not share the nation's highways gracefully or safely. Although precise data are not available, the best estimates suggest that more than 1.5 million deer-vehicle crashes (DVCs) in the United States in 2002 produced at least \$1.1 billion in vehicle damage, about 150 human fatalities, and at least 1.5 million dead deer (Conover et al., 1995; DeerCrash, 2003; Williams, 2003a). These numbers are rising every year as both the number of deer and the amount of motor vehicle travel continue to increase.

Many methods have been proposed and implemented in attempts to reduce DVCs. Few have been documented or evaluated well. This summary reviews the methods and evidence of their effectiveness. For the methods with solid evidence we discuss conditions most appropriate for their use. For promising methods we suggest additional research. Finally, we provide data collection and reporting recommendations that, if implemented, will help to understand the DVC problem more clearly and evaluate DVC control methods more accurately.

Deer Population and Crash Trends

Deer inhabit all of the United States, including Hawaii, where they have escaped from captivity. White-tailed deer are common east of the Rocky Mountains, especially in northeastern, southeastern, and midwestern states; mule deer are found from the Rocky Mountains west, with smaller populations of black-tailed deer in some locations. In southern areas, white-tailed deer usually occupy fixed range areas year-round. In northern areas with deep snow, white-tailed deer may travel many miles between summer

ranges and winter deer yards. These movements depend somewhat on winter severity and spring greenup. Mule deer have regular migratory routes between summer and winter ranges.

Deer population totals are difficult to estimate, but there is abundant evidence that deer populations have increased over the past century. McCabe and McCabe (1997) estimated a North American white-tailed population of 24-33 million in 1500, before European settlement began, which dropped below 2 million by 1900 and then rose to 16-17 million by 1997. Other estimates placed the total U.S. deer population at 25-30 million by the end of the twentieth century; for example, Knapp (2001) estimated more than 27 million deer. Knox (1997) estimated that Virginia's deer population increased from about 25,000 in 1923 to about 900,000 in 1994.

Nationwide DVC counts also are difficult to estimate, but there is strong evidence that they are increasing. Most state crash data files record crashes with animals but do not distinguish deer from other animals such as moose, elk, horses, and cattle. The National Highway Traffic Safety Administration (NHTSA) Fatality Analysis Reporting System, a census of all fatal traffic crashes, shows an average of 154 fatal crashes involving animals in the four years 1998-2001, compared with an average of 111 in the four years 1992-95, an increase of 39 percent. NHTSA's General Estimates System estimates about 274,000 total police-reported crashes with animals annually in 2000-01 compared with 222,000 in 1992-93, an increase of 24 percent (Williams, 2003a). Data from states that distinguish deer from other animals suggest that most animal crashes involve deer: 99.7 percent in Michigan (Highway Safety Information System (HSIS), 1995), more than 90 percent in Minnesota (HSIS, 1995), and 93 percent in Pennsylvania (Williams, 2003a).

DVCs increased by 54 percent in Pennsylvania from 1994 to 2000 (Williams, 2003a), by 51 percent in Iowa from 1990 to 1997 (Hubbard et al., 2000), and by 69 percent in five states combined (Illinois, Maine, Michigan, Minnesota, and Utah) from 1985 to 1991 (HSIS, 1995). In 1999, 16 percent of all reported traffic crashes in Wisconsin were DVCs, up from 5 percent in 1978 (DVCR Working Group, 2000). The number of DVC claims at a major automobile insurance company rose 21 percent from 1998 to 2001 (Williams, 2003b).

Many DVCs are not reported to police. In a small telephone survey in New York, Decker et al. (1990) found that police were notified of about half, and insurance companies of less than half, of the DVCs. Taking the police underreporting into account, Conover et al. (1995) estimated that about 1.5 million DVCs occurred annually in the mid-1990s. The reported crashes alone produced more than \$1.1 billion in vehicle damage (in 1993 dollars); the unreported crashes added additional vehicle damage costs. More recently, an estimated 131,500 DVCs occurred in 2000 in the five upper midwest states of Illinois, Iowa, Michigan, Minnesota, and Wisconsin, producing 23 deaths, 4,650 injuries, and \$222 million in vehicle damage (DeerCrash, 2003).

DVCs are seasonal. White-tailed deer DVCs peak in October and November during the breeding season, with a secondary peak in May and June as yearling deer disperse from their birth ranges (Allen and McCullough, 1976 (Michigan data); Decker et al., 1990 (New York data); Puglisi et al., 1974 (Pennsylvania data); HSIS, 1995 (data for five states combined)). Mule deer DVCs are most frequent during the spring and fall migrations (Messmer et al., 2000). DVCs occur predominantly in darkness, on high-speed, two-lane, rural roads (HSIS, 1995; Williams, 2003a), especially when forest cover is close to the roadway (Finder et al., 1999).

Study Approach

We reviewed both published studies and other information obtained from highway safety, motor vehicle insurance, and natural resources sources. Three review studies were especially useful: Danielson and Hubbard (1998), DeerCrash (2003), and Putman (1997). The DeerCrash website (deercrash.com) contains an extensive bibliography and periodically updates summaries of information on specific methods. Studies involving animals other than deer were not reviewed systematically but were included when appropriate.

Three general strategies to reduce DVCs are to modify driver behavior, modify deer behavior, or reduce the number of deer. Each can be attempted in several ways. We summarize the theoretical basis and supporting evidence for each method and assess the available evaluation studies. We did not conduct a formal meta-analysis with specific criteria to define high-quality studies. Rather, we give more weight to methods with evidence from studies with sound designs, controls for potentially confounding influences, adequate sample sizes, and consideration of how the method's effectiveness may change over time.

METHODS TO AFFECT DRIVER BEHAVIOR

Three methods to affect driver behavior are to increase driver awareness of deer and the possibility of DVCs, improve the visibility of deer on or approaching roadways, and reduce driving speeds so drivers have more time to avoid crashes.

General Education

General education consists of efforts to provide information about DVC dangers so drivers will watch more carefully for deer and drive more slowly. Typical methods include news stories and public awareness campaigns in peak DVC seasons. About half the states use some form of general education (Romin and Bissonette, 1993; Sullivan and Messmer, 2003).

None of the general education campaigns has been evaluated. In other traffic safety areas such as impaired driving and occupant protection, stand-alone general education campaigns have not been effective in modifying driver behavior (O'Neill, 2001; Williams, 1994). Campaigns can be effective

when they present new information that directly affects drivers and that is reinforced by something drivers can observe. For example, publicity announcing increased enforcement of a safety belt use law can be effective when the publicity is followed with extensive law enforcement presence. It is unlikely that DVC general education is useful unless it provides information on very specific and time-sensitive situations, such as the beginning of mule deer migration across a short road segment. In these situations, either temporary passive or active signs may be more effective than general campaigns.

Signs

Roadside signs attempt to warn drivers of specific locations and even times when deer may be present. Passive signs have a fixed message at all times, though they may use lights or animation to attract attention. Active signs are lighted when deer are detected on or near the roadway.

Passive signs: Roadway signs warning drivers of deer-crossing locations are used in almost all states (Romin and Bissonette, 1993; Sullivan and Messmer, 2003). Most are passive: fixed signs in fixed locations, with the same message in words or pictures at all times and in all seasons, usually a standard yellow diamond sign with the figure of a deer, as specified in the Manual of Uniform Traffic Control Devices.

No studies have evaluated the effectiveness of standard deer warning signs in increasing driver awareness of deer, in reducing driving speeds, or in reducing DVCs. Because passive signs are used so frequently at locations where deer are present only occasionally, drivers probably ignore them (Putman 1997, Sullivan and Messmer, 2003).

Lighted and animated signs: Three methods have been used to attempt to increase the effect of deer warning signs. The first is to make the signs more visible with lights, flags, or even a lighted and animated figure of a deer. In a small study of lighted and animated signs, Pojar et al. (1975) found a slight effect on vehicle speeds but no effect on DVCs.

Temporary passive signs: The second method, used on roads crossed by mule deer migration corridors, installs or uncovers passive signs only during migration periods. Messmer et al. (2000) used large warning signs with battery-powered flashing amber lights at the ends of a two-mile and a four-mile roadway section, together with smaller flashing signs at each milepost within the two sections. Travel speeds during three migration periods when the signs were displayed and activated dropped about 8 mph from pre-migration levels, and DVCs dropped by 50 percent in the spring and 70 percent in the fall migration compared with three previous years. In a more extensive study of the same technique, using a more powerful research design, Sullivan et al. (preprint) placed similar temporary lighted signs on five roadway sections in three states with an adjacent section, separated by a buffer section, as a control. DVCs were about 50 percent lower in signed than in control sections across all sites. Vehicle speeds also were lower in signed sections.

Active signs: The final method uses signs that are activated only when deer are detected near the roadway. Detection methods include infrared light (in Minnesota), radar (Wyoming), laser (Washington), radio frequency beams parallel to the roadway (Indiana), and heat detection cameras (British Columbia). In Washington, radio collars have been attached to 8 elk in a herd of 80 near a segment of Highway 101. Flashing "elk warning" signs are activated when any of the collared elk come within one-quarter mile of the roadway (DeerCrash, 2003).

The only evaluation of these methods to date is a small study of a segment of U.S. 30 in Nugget Canyon, Wyoming (Gordon et al., 2001). An eight-foot fence was erected along both sides of the roadway, with a 300-foot gap through which migrating deer could cross. Two deer detection systems were used: infrared heat sensors, and geophones that detect ground vibrations combined with infrared light beams that detect motion across the beam. Both systems detected almost all deer (very few false negatives). The heat sensor system also was activated by birds and snow (more than 50 percent false positives), while the combined geophone and infrared system had no false positives. Vehicle speeds dropped by about 4 mph when the "deer on road when lights are flashing" sign was lighted, regardless of whether the sign was triggered by a deer, a false positive, or remotely by a researcher. DVC data were not collected, and it is unclear whether the observed speed reduction would be large enough to affect DVCs.

In summary, standard passive signs, although low-cost and low-maintenance, are unlikely to have any effect, though no evaluations substantiate this conclusion. The one study of lighted signs showed no effect on DVCs. Initial results are encouraging for temporary passive signs used in defined mule deer migratory corridors during migratory periods, which can vary from year to year. More testing is needed before the potential of active signs can be evaluated accurately. The two main issues are to refine detection technology to minimize false positives and false negatives and to determine the effects of these signs on driver behavior and DVCs.

Deer Visibility

The sooner a driver sees a deer on or approaching a roadway, the better the chance of avoiding a crash. Deer visibility can be improved through roadway lighting, roadside clearing, or methods to enhance drivers' nighttime vision.

Roadway lighting: Roadway lighting is commonly used to improve driver vision in urban areas, freeway interchanges, and other potentially dangerous locations. Because most DVCs occur at night, roadway lighting is an obvious potential countermeasure. In the only study of the effect of roadway lighting on DVCs, Reed and Woodard (1981) studied a single three-quarter-mile section in Colorado using a one week on/one week off design. The lighting did not affect overall deer crossings or driving speeds, and the study was too small to detect an effect on DVCs.

Roadway lighting is expensive. Only two states reported using lighting to control DVCs (Romin and Bissonette, 1996). It is unlikely to be useful except in very specialized situations.

Roadside clearing: A broad clear roadside area allows drivers to see deer that may enter the road and reduces forage that may attract deer close to the roadway. Finder et al. (1999) found that the most important landscape or topographical feature predicting high DVC sites in Illinois was the distance between the roadway and forest cover. In a study in Norway, Jaren et al. (1991) found that a clear 20-30 meter strip reduced crashes between railway trains and moose by more than 50 percent. Putman (1997) and Bruinderink and Hazebroek (1996) recommend reducing forage near the roadside. Roadside clearing raises many issues beyond DVC control, such as the costs of acquiring roadside right-of-way and of maintaining a clear area, the potential safety benefits if trees adjacent to the roadway are removed, and the aesthetics of cleared areas along secondary roads.

Infrared detection from vehicles: A potential long-term strategy to improve drivers' night vision is to equip vehicles with infrared technology that can detect deer and other heat-emitting objects and transmit information to drivers on heads-up displays. These systems have been introduced recently in Cadillacs (General Motors, 2000) and as aftermarket equipment for heavy trucks (Bendix, 2002), but their effects on DVCs have not been evaluated. Any strategy involving vehicle modifications requires many years to implement in the majority of the vehicle fleet.

Speed Limits

An approach often suggested to reduce traffic crashes in many situations is to attempt to reduce travel speeds through lower speed limits. Unfortunately, lower speed limits do not necessarily produce lower travel speeds (Transportation Research Board, 1998). The only study to evaluate the effects of speed limit changes on wildlife crashes involved short road segments in the highly regulated environment of Jasper National Park. Bertwistle (1999) compared sheep and elk crashes for eight years before and eight years after the speed limit was reduced from 90 to 70 km/h on three highway segments of 2.5 km, 4 km, and 9 km. He found that sheep crashes *increased* on these segments and decreased on adjoining segments where the speed limit remained at 90 km/h. Elk crashes increased on the speed-limit-reduction segments and increased more on the unchanged segments. No travel speed data were collected to measure the direct effect of the speed limit change. Bertwistle notes that differences in sheep and elk behavior likely explain the crash result differences.

Speed limit reductions together with deer warning signs may be useful in very specific locations with high deer populations or migration routes. However, unless speed limits are actively enforced, they are unlikely to affect travel speeds significantly, and perhaps not even then. Although seven states reported reducing speed limits in an attempt to control DVCs (Romin and Bissonette, 1996), the effects of these speed limit reductions have not been evaluated.

METHODS TO AFFECT DEER BEHAVIOR

Deer behavior management strategies attempt to either physically block deer from the roadway or make the roadway less attractive to deer by appealing to their senses of sight, sound, or smell.

Physical Control

Fencing: Fencing provides a physical barrier that attempts to prevent deer from entering the roadway. Every review of DVC control methods during the past 20 years has concluded that properly designed and maintained fencing, used together with appropriate underpasses, overpasses, and one-way deer gates, is the most effective method for reducing DVCs both in the United States (Danielson and Hubbard, 1998; Reed et al., 1979) and in Europe (Bruinderink and Hazebroek, 1996; Putman, 1997; Staines et al., 2001). State wildlife administrators agree, while state highway administrators rank fencing second to reducing deer herd size (Sullivan and Messmer, 2003). In 1992, 11 states had erected fencing to reduce DVCs (Romin and Bissonette, 1996). Crashes with moose were reduced by 80 percent after about 1,300 km of main roads in Sweden were fenced (Lavsund and Sandegren, 1991).

Aside from herd reduction, fencing is the only DVC method that unquestionably is effective if applied properly. Fencing that is sufficiently high, strong, long, and well-anchored with no gaps or tunnels will prevent deer from crossing a fenced road section. The issues with fencing involve the details and side effects.

- Physical characteristics: Fencing must be sufficiently high and long. Several studies have found 2.4 m (7.8 ft) fencing effective (Ward, 1982 (in Wyoming); Reed et al., 1982 (in Colorado); Ludwig and Bremicker, 1983 (in Minnesota)). White-tailed deer will jump a 2.2 m (7.4 ft) fence in search of food (Bellis and Graves, 1978). Fencing must extend far enough along a roadway to discourage deer from detouring around the ends of the fenced section. The necessary length depends on deer movement patterns. After one year's experience, Ward (1982) extended a fenced section from 6.7 to 7.8 miles and reduced end runs substantially. Electric fencing, currently being studied in Michigan, may provide an effective alternative to chain-link fencing (DVCR Working Group, 2000). Curtis et al. (1994) summarized the characteristics and effectiveness of various fencing types used to prevent deer from damaging crops.
- Maintenance: Regular checks are required to repair tunnels and breaks caused by erosion, animals, falling trees, and people. Deer regularly test a fence and are quick to pass through any breaks or gaps (Ward, 1982). Deer can crawl though openings less than 10 inches high under a fence (Bellis and Graves, 1978; Falk et al., 1978).
- Effect on deer movements: Fencing design should consider deer movement patterns and provide safe passage routes, as appropriate, through underpasses or other methods.

- Escape routes: Deer that manage to enter a fenced roadway need some way to escape. One-way
 gates have been found generally successful (Reed et al., 1974; Ward, 1982; Ludwig and
 Bremicker, 1983).
- Costs: Effective fencing is costly to construct and maintain. Iowa recently estimated construction
 costs for 8 ft chain-link fence on one side of a roadway at \$42,000 per mile (Danielson and
 Hubbard, 1998).
- Other effects: Roadway fencing or more substantial physical barriers may have other benefits
 such as reducing noise in adjacent properties or preventing pedestrian access to high-speed roads.
 Fencing and barriers may have positive or negative aesthetic implications.

Underpasses and overpasses: Deer underpasses, and more rarely used overpasses, allow deer to cross a roadway without encountering vehicles. Deer sometimes use underpasses or overpasses created when highways cross rivers or tunnel through ridges. Seven states report using underpasses specifically to allow deer crossings (Romin and Bissonette, 1996). Olbrich (1984) noted 824 under- and overpasses for animals on 823 km of federal highway in West Germany. To be effective, fencing or other barriers are required to channel deer to underpasses and overpasses.

Ward (1982) describes how a system of fencing and six underpasses was used along 7.8 miles of interstate highway crossing a mule deer migration route. The system did not disrupt deer movement and virtually eliminated DVCs. Other studies consider whether and how underpasses and overpasses are used rather than how they affect DVCs. Deer can be reluctant to use them, even when highly motivated to move along a migration route or to forage (Reed et al., 1975). Deer can remain wary or frightened even after several years of experience with the same underpass (Reed, 1981). Ward (1982) placed forage in underpasses to attract deer.

Factors affecting the use of underpasses and overpasses include their locations in relation to natural deer paths, size (wide openings and short lengths), design (earth floors), visual appearance (exit clearly visible from entrance, light walls and ceiling), and woody cover at the entrances (Danielson and Hubbard, 1998; Hartmann, 2003; Putman, 1997). In particular, some studies propose a minimum acceptable underpass "openness factor" of entrance area divided by underpass length (Putman, 1997).

Fencing and underpasses have been used to assist various species. Hartmann (2003) summarizes several case studies of underpass and overpass use by elk, bear, panther, mountain goats, and even salamanders. Singer and Doherty (1985) describe an underpass construction for mountain goats that directed almost all goats under rather than across the highway. Foster and Humphrey (1995) review other useful studies.

Underpasses and overpasses are expensive when included in original highway construction. Adding them to an existing highway is even more expensive.

At-grade crosswalks: Crosswalks may provide a middle ground between a fully separated underpass or overpass and uncontrolled crossings marked only with signs. In the only study to date, Lehnert and Bissonette (1997) installed nine crosswalks on about 13 miles of two-lane and 4 miles of divided four-lane highways in Utah, with similar adjacent roads used as controls. At each crosswalk, fencing and landscaping directed deer to the crosswalk area. Because fencing was not permitted on the highway shoulder, the deer were channeled to the highway on a dirt path bordered by cobblestones. A similar path bordered by cobblestones crossed the divided highway's median strip. White painted cattleguard lines bounded the path across the highway surface. One-way gates in the fencing near the crosswalks allowed deer that moved beyond the crosswalk area to leave the roadway. Passive signs warned drivers to expect deer in the crosswalk areas.

The crosswalks appeared to decrease DVCs by about 40 percent, although the small sample size precluded any definitive conclusions. The crosswalk design of cobblestones and cattleguard stripes directed many, but not all, deer across the road as intended. Although drivers may have been more alert for deer at crosswalk areas, fewer than 5 percent responded to crosswalk signs by slowing down or turning on their high-beam headlights.

Crosswalks may be worth additional study to determine if design improvements can contain deer more effectively and if active signs that detect deer in the crosswalk area can improve driver awareness and actions.

Crosswalks, underpasses, and overpasses are more likely to be effective for western mule deer than eastern white-tails. Mule deer have defined migratory routes across highways, so DVCs are confined to relatively few locations where these expensive control methods can be justified. In contrast, white-tailed deer crashes occur throughout substantial lengths of two-lane, rural roads (Maine Department of Transportation, 2002). Further, DVCs occur most frequently in the fall breeding season, when antiered males are chasing females. At these times, crosswalks or other methods short of the complete physical control provided by substantial fences are unlikely to keep deer off the highway.

Sensory Control

Reflectors: Reflectors, used in Europe and some areas of the United States for more than 30 years, are the most contentious DVC control method. They have strong advocates, strong opponents, and conflicting results from more than 10 studies. The most commonly used and most frequently evaluated system, manufactured by Swareflex, consists of reflectors installed on posts at regular intervals along the roadway. Light from vehicle headlights is reflected to form a continuous "visual fence" of red, bluegreen, or white light that deer are expected not to cross. Red reflectors form a visual barrier that humans cannot detect, so that it does not distract drivers. In 1992, 22 states reported using reflectors (Romin and Bissonette, 1997).

The basic behavioral questions about reflectors are whether deer can see light in the wavelengths used, whether deer are reluctant to cross such light beams, and whether deer become habituated to light beams over time. Zacks (1986) studied the effect of red and white light from Swareflex reflectors on penned white-tailed deer. He found no evidence that a beam of red or white light produced by reflectors from a static source, as opposed to a moving vehicle, affected deer behavior. Ujvari et al. (1998) exposed fallow deer in a large forested area to light from WEGU reflectors (a design similar to Swareflex) during a period of 15 nights. They found the proportion of deer that did not react to the reflected light increased over time: on the first night, 99 percent of the deer fled from low-intensity reflected light, while on the final three nights about 40 percent were completely indifferent to higher intensity light.

DeerCrash (2003) describes and summarizes 10 studies that attempt to evaluate the effect of roadside reflectors on DVCs using different study designs. The overall results are at best ambiguous.

- Four studies used designs that alternately cover and uncover the reflectors along a roadway segment. One found reflectors effective and three did not.
- Four studies used before/after designs. One found reflectors effective, one did not, and two had
 inconclusive results.
- Two studies used treatment/control designs. One found that reflectors were effective at some sites but not at others and the other study found no effect.

The best study in terms of its design, size, and power is Reeve and Anderson (1993), who used a cover/uncover design with control segments for three years on a 24.1 km segment of U.S. 30 in Wyoming that crosses a major mule deer migration route. They recorded 126 DVCs when the reflectors were uncovered, 64 when covered, and 147 on control segments. They concluded that the reflectors had no effect on DVCs.

Schafer and Penland (1985) provide the most positive site-specific evidence of effectiveness. They studied four roadway sections totaling 3.68 km in Washington during three years, in an area populated largely by white-tailed deer. They also used a cover/uncover design but with no control segments. They recorded 52 DVCs when reflectors were covered and only 6 when uncovered, concluding that the reflectors were highly effective.

Pafko and Kovach (1996) summarize results from a larger but less controlled application in Minnesota. Reflectors were installed at 16 road segments totaling 16.35 miles, four segments each in coniferous forest, prairie farmland, central hardwood, and metropolitan hardwood habitats. Average annual DVC counts on these segments for several years before and seven years after installation show 79 to 90 percent reductions in DVCs in the three rural habitats from pre-installation DVC averages of 98 to 214. In the metropolitan habitat, DVCs increased by 87 percent from a pre-installation average of 11.8.

These three examples illustrate the difficulties of drawing definitive conclusions from even the best studies. The very substantial reductions from high DVC totals found by Pafko and Kovach (1996)

suggest significant effects even though their simple before/after design does not control for other factors that may influence DVCs and their DVC counts may not be completely accurate. However, the authors note that estimated statewide deer populations were increasing during the study, DVCs did not decrease substantially on other roads, and the reductions appeared stable for several years. The increase in metropolitan areas may be due to small sample sizes, traffic volume increases, or reflector ineffectiveness on heavily traveled roads. Reeve and Anderson (1993) and Schafer and Penland (1985) reach very different conclusions from similar studies. Schafer and Penland had a considerably smaller study, with no control area, in an area populated largely by whitetails, while Reeve and Penland's study was on a mule deer migratory route.

If reflectors are effective, they offer obvious advantages. They are cheaper to install and maintain than physical barriers created with fencing and underpasses, though their cost is not insignificant — an estimated \$8,000 to \$10,000 per mile for installation (Danielson and Hubbard, 1998) plus annual maintenance to repair or replace damaged reflectors. Reflectors form a barrier only when vehicle headlights are present, so they allow deer to cross roads freely during daylight hours. However, the evaluations to date leave many questions unanswered. There appears to be no solid behavioral evidence that deer are reluctant to cross a light beam produced by reflectors. Do deer cross a beam at will, as suggested by Zacks (1986)? Do deer become habituated to such a beam, as found by Ujvari et al. (1998)? Are reflectors effective on high-volume roadways where there are few breaks in traffic to permit deer to cross? Are they effective on migratory routes or low-volume roads through established range areas where deer move freely?

Simple metal mirrors to reflect vehicle headlights as white light flashes also have been installed in a manner similar to reflectors. It appears that deer rapidly become accustomed to them, and they corrode quickly (Gilbert, 1982; Putman, 1997). Lavsund and Sandegren (1991) concluded from a large experiment that mirrors had no effect whatsoever on moose crashes in Sweden.

Flagging: An early attempt to influence deer behavior through sight was based on the observation that white-tailed deer raise their tails as a warning sign to other deer. Graves and Bellis (1978) placed rear-view silhouette models of deer with raised tails along a highway. These deer flag models did not affect deer movements (see also DeerCrash, 2003).

Whistles: Deer warning whistles have been available to the public for more than 20 years. A typical whistle is attached to a vehicle and produces ultrasonic noise in the range of 16-20 kHz when vehicle speed exceeds about 30 mph (DeerCrash, 2003). Whistles are based on the presumption that deer can hear and will be warned away from noise in this range. Twenty states reported using whistles in 1992 (Romin and Bissonette, 1997), although state wildlife agency and transportation department administrators ranked whistle effectiveness lowest of all common methods (Sullivan and Messmer, 2003).

Romin and Dalton (1992) conducted the only high-quality study of whistle effects. They drove past 150 groups of deer at distances up to 100 meters and a speed of 65 km/h, observing deer behavioral responses. Two common brands of whistles had no effect on deer behavior, even when deer were within 10 meters of the road. Romin and Dalton were unaware of any research demonstrating that deer are frightened by sound in the range produced by whistles. In a review of the effects of sound on animals and birds of many species, Bomford and O'Brien (1990) concluded that sounds of the type produced by whistles (steady noise rather than specific alarm or distress signals) may influence movements in the short term but that mammals and birds become accustomed to these sounds after long or frequent exposure.

Several less scientific reports and considerable anecdotal evidence either support or deny the effectiveness of whistles. For example, Cline (1989) reported on a one-year test of whistles attached to 42 Michigan State Police vehicles in five locations; 43 vehicles in five other locations served as controls. There were 14 DVCs involving police vehicles in the test locations and 5 in the control locations during the prior year; during the experimental year, there were 5 DVCs in each location. Based on these results, Cline concluded that the whistles were effective.

Roadside whistles, as opposed to vehicle-mounted whistles, are being tested in Saskatchewan (Beaupré, 2002). A series of noisemaking devices together with vehicle detection sensors was mounted along a 5 km section of highway. When the sensors detect a vehicle, the device warns deer with either sound or light signals.

In summary, there is no firm evidence that whistles are effective and considerable evidence that they are not. In the only high-quality study (Romin and Dalton, 1992), deer were not affected by whistles. It is unclear whether deer can hear whistles, whether whistle noise is covered by traffic noise, or whether deer become accustomed to whistle noise over time. In the absence of any solid studies that whistles are effective, they cannot be recommended.

Repellents: Chemical and biological substances attempt to repel deer in two ways. Contact repellents with unpleasant tastes applied to a food source seek to reduce or eliminate feeding. Area repellants with unpleasant smells, such as predator urine, seek to prevent deer from entering or crossing an area.

Several studies, summarized in El Hani and Conover (1995) and DeerCrash (2003), evaluated the effectiveness of various repellents on the feeding patterns of white-tailed and mule deer. Some repellents reduced feeding, but none completely stopped deer from feeding or entering an area.. The studies also showed that deer habituate to repellents and will not be deterred by them if sufficiently hungry. No study in the United States has evaluated the effects of repellents in reducing DVCs, and repellents are not used systematically in any state to control DVCs (Romin and Bissonette, 1996). Putman (1997) reported that repellent "scent fences" have been studied in Germany, with mixed results. Early results from a repellent "odor fence" installed along 53 km of roadway in British Columbia, using posts and boxes every 0.25 km,

reportedly showed a 36 percent DVC reduction from the prior 10 years, and a test of four different repellents along 16 km of roadway on Vancouver Island began in 1999 (DVCR Working Group, 2000).

Repellents are most likely to hinder deer movements when applied in conjunction with fences or other physical barriers (Curtis et al., 1994). Jordan and Richmond (1992) demonstrated that an electric fence treated with repellents was more effective in deterring deer from feeding on apples than an electric fence alone, although repellent effectiveness decreased significantly after several weeks. The combination of repellents and fences has proved useful for home gardens and agricultural fields (Curtis et al., 1994) but would be expensive to install and maintain along highways.

Intercept feeding: In certain locations, deer regularly cross roadways to feed. Wood and Wolfe (1988) studied three such road sections in Utah for two years. On the treatment portion of each section, they established and maintained feeding stations more than 1,200 feet away from the roadway. They found lower DVCs in some, but not all, treatment areas. They noted that a feeding program has continuing costs, may make deer dependent on the food provided, and may attract more deer to the roadside. They concluded that intercept feeding may be useful only temporarily in specific situations.

Salt alternatives: Some authors suggest that deer may be attracted to roadways by salt applied to melt ice in the winter and that other deicing substances should be used instead (Feldhamer et al., 1986; DeerCrash, 2003). However, no studies have investigated the issue.

METHODS TO AFFECT DEER POPULATIONS

If there were no deer, or no deer near highways, there would be no DVCs. Deer herd reduction has long been considered an appropriate strategy for reducing DVCs as well as crop and garden losses caused by deer (DeNicola et al., 2000). State transportation department administrators rated herd management as potentially the most effective DVC control strategy, while state wildlife administrators rated it second only to fencing (Sullivan and Messmer, 2003).

The only herd reduction strategy that would completely eliminate DVCs would be to eliminate all deer, which the general public would not accept. Indeed, even in a high DVC area, only a minority of the public wished to reduce the deer population (Stout et al., 1993). In a survey of 10 randomly selected large metropolitan areas, 63 percent of respondents wanted no change in the number of deer in their neighborhoods, 27 percent wanted more deer, and only 10 percent wanted fewer deer (Conover, 1997).

Two reports document how local deer herd management policies can affect DVCs. In 1972, Princeton, New Jersey, passed a no-firearms-discharge ordinance. DVCs then increased by 436 percent in 10 years, from 33 in 1972 to 144 in 1982, compared with no statistically significant change in two adjoining townships where firearms hunting continued to be allowed (Kuser, 1995). Princeton then tried to reduce DVCs and other deer-related problems with deer whistles, reflectors, and increased bowhunting, but DVCs continued to rise, to 167 in 1991 and 227 in 1992.

Irondequoit, New York, began a selective deer culling and bowhunting program in 1993. About 125 deer were removed in each of the next eight years. DVCs dropped from 227 in 1992 to about 100 annually in the late 1990s (Eckler, 2001).

Although herd reduction can be controversial, common sense and expert opinion agree that substantial and continued herd reductions will reduce DVCs (Danielson and Hubbard 1998; DVCR Working Group, 2000). But many questions remain, including the effectiveness of herd reductions over a large area on DVCs, the amount of herd reduction necessary to reduce DVCs substantially, how deer range and migration patterns influence the effect of herd reductions on DVCs, and how to design cost-effective herd reduction programs (Brown et al., 2000). Wisconsin and other states are pursuing aggressive deer herd reduction programs (DVCR Working Group, 2000). Data from these programs may help address these questions.

SUMMARY AND CONCLUSIONS

Effective Methods with Solid Scientific Evidence

Fencing, combined with underpasses and overpasses as appropriate, is the only broadly accepted method that is theoretically sound and proven to be effective. Fencing is expensive to construct and maintain, and even the best fencing will not prevent all deer from entering a roadway.

Promising Methods Where More Information Is Needed

Herd reduction is unquestionably effective in reducing DVCs if the deer population in a specific area is reduced by a substantial amount. More research is needed on the minimum area needed for herd reduction to have a substantial effect and on the expected impact of a given amount of herd reduction on DVCs. A herd reduction strategy should be part of an overall wildlife management program that balances the costs and benefits of maintaining wildlife populations.

Roadside clearing may be effective, although there is very limited information supporting it. Roadside clearing must be part of a broader strategy of roadway design and maintenance.

Both temporary passive signs and active signs appear promising in specific situations, but considerable research is required to evaluate long-term driver response and to improve and test deer detection technology for active signs.

At-grade crossings for deer, perhaps combined with active signs, offer a long-shot chance at providing greater safety than uncontrolled crossings marked only with passive signs. At-grade crossings are most promising for highways crossing mule deer migration routes in western states.

Infrared driver vision technology in vehicles may be effective in the future. Its development and implementation will depend on its usefulness in improving driver night vision overall, not on its effect on DVCs.

Methods With Limited Demonstrated Effectiveness

Although reflectors have been studied fairly often, most studies were not designed or conducted well. The balance of the available evidence is that reflectors have little long-term effect, especially for white-tailed deer in suburban areas. Additional high-quality studies would be useful to investigate deer response and habituation to light beams and the effectiveness of reflectors when implemented.

Roadside lighting and intercept feeding may have limited effectiveness in specialized situations. Both methods are costly and have side effects that must be considered carefully.

Deer repellents can have limited effectiveness in modifying deer feeding and movement patterns. It is unlikely that repellents will be useful in roadway applications.

Methods that Appear Ineffective Based on Available Evidence

General education, passive signs, and lower speed limits appear ineffective in influencing driver behavior and reducing DVCs. The lack of good studies proving their ineffectiveness probably results from the unwillingness of funding organizations to allocate resources to study methods that are so unpromising.

Ineffective Methods with Evidence from Controlled or Experimental Situations

Deer whistles and deer flagging signs are not effective.

DISCUSSION AND RECOMMENDATIONS

Previous reviews of DVC control methods (Reed et al., 1979; Bruinderink and Hazebroek, 1996; Putman, 1997; Danielson and Hubbard, 1998; Staines et al., 2001) reached conclusions similar to ours, as did a review of moose-vehicle crashes in Sweden (Lavsund and Sandegren, 1991). There is no quick, cheap method to reduce DVCs. Fencing and herd reduction programs can be effective if they are designed and maintained well, but they are neither cheap nor quick.

DVC control must be part of an overall environmental strategy that balances the competing needs of humans and wildlife. For example, there is a trend in suburban areas to preserve or create green space and wildlife corridors (Houck, 1990). These areas must be carefully planned and coordinated by transportation, natural resource, and urban planning agencies to avoid attracting more deer and increasing DVCs.

Data Collection and Reporting

States should identify crashes involving deer on their state crash report forms and crash data files rather than aggregating crashes involving all animals. Without this, it is difficult to track DVC totals, trends, and patterns. States also should record precise DVC locations, as Maine does (Maine Department of Transportation, 2002), using GIS or other methods, to identify areas with high DVC frequencies. This

information is critical in deciding where fencing, herd reduction, active signs, or other DVC control methods are needed.

Research

Research is needed in the following areas.

- Herd reduction: minimum geographic area needed to be effective, effect of different amounts of herd reduction on DVCs in various settings
- Active signs: improved deer detection technology, long-term driver response
- Temporary passive signs and at-grade crossings: additional field trials under varying circumstances
- Reflectors: deer response and habituation, effect of reflector systems as implemented
- Intensive general education: effects of intensive driver awareness programs for DVCs in targeted communities
- Integrated DVC program: effects of coordinated program including signs, roadside clearing, and general education in specific high DVC locations
- Data: multi-state survey of DVC reporting to police, insurance companies, and wildlife agencies

ACKNOWLEDGMENTS

This study was supported by the Insurance Institute for Highway Safety. The opinions, findings, and conclusions are those of the authors and do not necessarily reflect the views of the Insurance Institute for Highway Safety.

REFERENCES

Allen, R.E. and McCullough, D.R. 1976. Deer-car accidents in southern Michigan. *Journal of Wildlife Management* 40:317-25.

Beaupré, V.G. 2002. Pilot project to deter wildlife-vehicle collisions. Press release. Regina, Saskatchewan: Saskatchewan Department of Highways and Transportation. Available: http://www.gov.sk.ca/newsrel/releases/2002/05/09-326.html.

Bellis, E.D. and Graves, H.B. 1978. Highway fences as deterrents to vehicle-deer collisions. Transportation Research Record 674:53-58. Washington, DC: Transportation Research Board.

Bendix. 2002. Bendix begins sale of XVision™ infrared nighttime vision system. Press release. Elyria, OH. Available: http://www.bendix.com/products/XVisionPR.shtml.

Bertwistle, J. 1999. The effects of reduced speed zones on reducing bighorn sheep and elk collisions with vehicles on the Yellowhead Highway in Jasper National Park. *Proceedings of the 1999 International Conference on Wildlife Ecology and Transportation*. Tallahassee, FL: Florida Department of Transportation.

Bomford, M. and O'Brien, P.H. 1990. Sonic deterrents in animal damage control: a review of device tests and effectiveness. Wildlife Society Bulletin 18:411-22.

Brown, T.L.; Decker, D.J.; Riley, S.J.; Enck, J.W.; Lauber, T.B.; Curtis, P.C. and Mattfeld, G.F. 2000. The future of hunting as a mechanism to control white-tailed deer populations. *Wildlife Society Bulletin* 28:797-807.

Bruinderink, G.W.T.A. and Hazebroek, E. 1996. Ungulate traffic collisions in Europe. *Conservation Biology* 10:1059-67.

Cline, B.C. 1989. The State of Michigan's Car-Deer Whistle Research Project. Lansing, MI: Michigan Department of Management and Budget.

Conover, M.R. 1997. Wildlife management by metropolitan residents in the United States: practices, perceptions, costs, and values. Wildlife Society Bulletin 25:306-11.

Conover, M.R.; Pitt, W.C.; Kessler, K.K.; DuBow, T.J. and Sanborn, W.A. 1995. Review of human injuries, illnesses, and economic losses caused by wildlife in the United States. *Wildlife Society Bulletin* 23:407-14.

Curtis, P.D.; Fargione, M.J. and Richmond, M.E. 1994. Preventing deer damage with barrier, electrical, and behavioral fencing systems. *Proceedings of the 16th Vertebrate Pest Conference* (eds. W.S. Halverson and A.C. Crabb), 16:223-227. Davis, CA: University of California, Davis

Danielson, B.J. and Hubbard, M.W. 1998. A literature review for assessing the status of current methods of reducing deer-vehicle collisions. Ames, IA: Iowa Department of Transportation and Iowa Department of Natural Resources.

Decker, D.J.; Loconti Lee, K.M. and Connelly, N.A. 1990. Deer-related vehicular accidents in Tompkins County, New York: incidence, costs, and implications for deer management *Transactions of the Northeast Section of the Wildlife Society* 47:21-26.

DeerCrash. 2003. Countermeasures toolbox. Madison, WI: University of Wisconsin, Madison, Deer-Vehicle Crash Information Clearinghouse. Available: http://www.deercrash.com/toolbox/index.htm.

DeNicola, A.J.; VerCauteren, K.C.; Curtis, P.D. and Hyngstrom, S.C. 2000. Managing White-Tailed Deer in Suburban Environments: A Technical Guide. Ithaca, NY: Cornell Cooperative Extension.

DVCR Working Group. 2000. Final Report: Deer Vehicle Collision Reduction Working Group Conference. Madison, WI: Sand County Foundation.

Eckler, J. 2001. Irondequoit Live Deer Spotliight Survey, Fall 2000. Albany NY: New York State Department of Environmental Conservation.

El Hani, A. and Conover, M.R. 1995. Comparative analysis of deer repellents. Repellents in Wildlife Management Symposium Proceedings. Fort Collins, CO: National Wildlife Research Center, Animal and Plant Health Inspection Service.

Falk, N.W.; Graves, H.B. and Bellis, E.D. 1978. Highway right-of-way fences as deer deterrents. *Journal of Wildlife Management* 42:646-50.

Feldhamer, G.A.; Gates, J.E.; Harman, D.M.; Loranger, A.J. and Dison, K.R. 1986. Effects of interstate highway fencing on white-tailed deer activity. *Journal of Wildlife Management* 50:497-503.

Finder, R.A.; Roseberry, J.L. and Woolf, A. 1999. Site and landscape conditions at white-tailed deer/vehicle collision locations in Illinois. *Landscape and Urban Planning* 44:77-85.

Foster, M.L. and Humphrey, S.R. 1995. Use of highway underpasses by Florida panthers and other wildlife. Wildlife Society Bulletin 23:95-100.

General Motors. 2000. DeVille becomes first car to offer safety benefits of night vision. Detroit, MI. Available: http://www.gm.com/company/gmability/safety/crash_avoidance/newfeatures/night_vision.html.

Gilbert, J.R. 1982. Evaluation of deer mirrors for reducing deer-vehicle collisions. Report no. FHWA-RD-82-061. Washington, DC: Federal Highway Administration.

Gordon, K.M.; Anderson, S.H.; Gribble, B. and Johnson, M. 2001. Evaluation of the FLASH (Flashing Light Animal Sensing Host) system in Nugget Canyon, Wyoming. Report no. FHWA-WY-01/03F. Laramie, WY: University of Wyoming.

Graves, H.B. and Bellis, D.E. 1978. The effectiveness of deer flagging models as deterrents to deer entering highway rights-of-way. Report no. FHWA-PA-78-12. Washington, DC: Federal Highway Administration.

Hartmann, M. 2003. Evaluation of wildlife crossing structures: their use and effectiveness. Missoula, MT: Wildlands Center for Preventing Roads. Available: http://www.wildlandscpr.org/resourcelibrary/reports/EvaluationByMaureenHartmann.htm.

Houck, M.C. 1990. Metropolitan wildlife refuge system: a strategy for regional natural resource planning. *Wildlife Conservation in Metropolitan Environments* (eds. L.W. Adams and D.L. Leedy), 225-29. Columbia, MD: National Institute for Urban Wildlife.

Highway Safety Information System. 1995. Investigation of crashes with animals. Report no FHWA-RD-94-156. Washington, DC: Federal Highway Administration.

Hubbard, M.W.; Danielson, B.J. and Schmitz, R.A. 2000. Factors influencing the location of deer-vehicle accidents in Iowa. *Journal of Wildlife Management* 64:707-13.

Jaren, V.; Andersen, R.; Ulleberg, M.; Pedersen, P.H. and Wiseth, B. 1991. Moose-train collisions: the effects of vegetation removal with a cost-benefit analysis. *Alces* 27:93-99.

Jordan, D.M. Jr. and Richmond, M.E. 1992. Effectiveness of a vertical 3-wire electrical fence modified with attractants or repellents as a deer exclosure. *Proceedings of the Fifth Eastern Wildlife Damage Control Conference*, 44-47.

Knapp, K. 2001. Midwest deer-vehicle crash facts. Madison, WI: University of Wisconsin, Madison, Deer-Vehicle Crash Information Clearinghouse.

Knox, W.M. 1997. Historical changes in the abundance and distribution of deer in Virginia. *The Science of Overabundance* (eds. W.J. McShea, H.B. Underwood, and J.H. Rappole). Washington, DC: Smithsonian Institution Press.

Kuser, J. 1995. Deer and people in Princeton, New Jersey, 1971-1993. Urban Deer: A Manageable Resource? Proceedings of the 1993 Symposium of the North Central Section, the Wildlife Society (ed. J.B. McAninch), 47-50.

Lavsund, S. and Sandegren, F. 1991. Moose-vehicle relations in Sweden; a review. Alces 27:118-26.

Lehnert, M.E. and Bissonette, J.A. 1997. Effectiveness of highway crosswalk structures at reducing deervehicle collisions. *Wildlife Society Bulletin* 25:809-18.

Ludwig, J. and Bremicker, T. 1983. Evaluation of 2.4m fences and one-way gates for reducing deervehicle collisions in Minnesota. *Transportation Research Record* 913:19-22. Washington, DC: Transportation Research Board.

Maine Department of Transportation. 2002. Maine deer crashes, 1999-2001. Augusta ME: Maine Department of Transportation.

McCabe. T.R. and McCabe, R.D. 1997. Recounting whitetails past. *The Science of Overabundance* (eds. W.J. McShea, H.B. Underwood, and J.H. Rappole). Washington, DC: Smithsonian Institution Press.

Messmer, T.A.; Hendricks, C.W. and Klimack, P.W. 2000. Modifying human behavior to reduce wildlifevehicle collisions using temporary signage. *Wildlife and Highways: Seeking Solutions to an Ecological and Socio-Economic Dilemma* – Seventh Annual Meeting of the Wildlife Society, 134-47.

Olbrich, P. 1984. Untersuchung der Wirksamkeit von Woldwarnreflektoren und der Eignung von Wilddurchlassen. Zeitschrift für Jagdwissenschaft 30:101-16.

O'Neill, B. 2001. Seat belt use: where we've been, where we are, and what's next. 2001 Seat Belt Summit: Policy Options for Increasing Seat Belt Use in the United States in 2001 and Beyond, Appendix A. Arlington, VA: Automotive Coalition for Traffic Safety.

Pafko, F. and Kovach, B. 1996. Minnesota experience with deer reflectors. *Proceedings of Transportation and Wildlife: Reducing Wildlife Mortality and Improving Wildlife Passageways Across Transportation Corridors*, 116-124. Tallahassee, FL: Florida Department of Transportation.

Pojar, T.M.; Reed, D.F.; Reseigh, T.C. and Woodard, T.N. 1975. Effectiveness of a lighted, animated deer crossing sign. *Journal of Wildlife Management* 39:87-91.

Puglisi, M.J.; Lindzey, J.S. and Bellis, E.D. 1974. Factors associated with highway mortality of white-tailed deer. *Journal of Wildlife Management* 38:799-807.

Putman, R.J. 1997. Deer and road traffic accidents: options for management. *Journal of Environmental Management* 51:43-57.

Reed, D.F. 1981. Mule deer behavior at a highway underpass exit. *Journal of Wildlife Management* 45:542-43.

Reed, D.F.; Beck, T.D. and Woodard, T.N. 1982. Methods of reducing deer-vehicle accidents: benefit-cost analysis. *Wildlife Society Bulletin* 10:349-54.

Reed, D.F.; Pojar, T.M. and Woodard, T.N. 1974. Use of one-way gates by mule deer. *Journal of Wildlife Management* 38:9-15.

Reed, D.F. and Woodard, T.N. 1981. Effectiveness of highway lighting in reducing deer-vehicle collisions. *Journal of Wildlife Management* 45:721-26.

Reed, D.F.; Woodard, T.N. and Beck, T.D.I. 1979. Regional deer-vehicle accident research. Report no. FHWA-CO-RD-79-11. Denver, CO: Colorado Division of Wildlife.

Reed, D.F.; Woodard, T.N. and Pojar, T.M. 1975. Behavioral response of mule deer to a highway underpass. *Journal of Wildlife Management* 39:361-67.

Reeve, A.F. and Anderson, S.H. 1993. Ineffectiveness of Swareflex reflectors at reducing deer-vehicle collisions. Wildlife Society Bulletin 21:127-32.

Romin, L.A. and Bissonette, J.A. 1997. Deer-vehicle collisions: status of state monitoring activities and mitigation efforts. Wildlife Society Bulletin 24:276-83.

Romin, L.A. and Dalton, L.B. 1992. Lack of response by mule deer to wildlife warning whistles. Wildlife Society Bulletin 20:382-84.

Schafer, J.A. and Penland, S.T. 1985. Effectiveness of Swareflex reflectors in reducing deer-vehicle accidents. *Journal of Wildlife Management* 49:774-76.

Singer, F.J. and Doherty, J.L. 1985. Managing mountain goats at a highway crossing. Wildlife Society Bulletin 13:469-77.

Staines, B.; Langbein, J. and Putman, R. 2001. Road traffic accidents and deer in Scotland. Aberdeen, UK: University of Aberdeen.

Stout, R.J.; Stedman, R.C.; Decker, D.J. and Knuth, A.B. 1993. Perception of risk from deer-related vehicle accidents: implications for public preferences for deer herd size. *Wildlife Society Bulletin* 21: 237-49.

Sullivan, T.L. and Messmer, T.A. 2003. Perceptions of deer-vehicle collision management by state wildlife agency and department of transportation administrators. *Wildlife Society Bulletin* 31:163-73.

Sullivan, T.L.; Williams, A.F.; Messmer, T.A.; Nelson, L.A. and Kyrychenko, S.Y. 2003. Effectiveness of temporary warning signs in reducing deer-vehicle collisions during mule deer migrations (preprint). Arlington, VA: Insurance Institute for Highway Safety.

Transportation Research Board. 1998. Managing speed: review of current practice for setting and enforcing speed limits. Special Report 254. Washington, DC: Transportation Research Board.

Ujvari, M.; Baagoe, H.J. and Madsen, A.B. 1998. Effectiveness of wildlife warning reflectors in reducing deer-vehicle collisions: a behavioral study. *Journal of Wildlife Management* 62:1094-99.

Ward, A.L. 1982. Mule deer behavior in relation to fencing and underpasses on Interstate 80 in Wyoming. *Transportation Research Record* 859:8-13. Washington, DC: Transportation Research Board.

Williams, A.F. 1994. The contribution of education and public information to reducing alcohol-impaired driving. *Alcohol, Drugs, and Driving* 10:197-205.

Williams, A.F. 2003a. Motor vehicle/animal collisions. Internal memorandum. Arlington, VA: Insurance Institute for Highway Safety.

Williams, A.F. 2003b. Personal communication.

Wood, P. and Wolfe, M.L. 1988. Intercept feeding as a means of reducing deer-vehicle collisions. *Wildlife Society Bulletin* 16:376-80.

Zacks, J.L. 1986. Do white-tailed deer avoid red? An evaluation of the premise underlying the design of Swareflex wildlife reflectors. *Transportation Research Record* 1075:35-43. Washington, DC: Transportation Research Board.

Appendix B.4

Wild Animal Crash Data on US-20 From MP 369 to 375.5 Between 7/1/2000 and 3/9/2012

Photographs of US-20 Before, During, and After the Tree Clearing Project During July 2010

Wild Animal Related Crashes on US-20 from MP 369 to 375.5 from 7/1/2000 to 3/8/2012

Property Dmg Report	11/13/2010	Dark, No Street Lights	<u>e</u>	Snow	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Pickup/Van/Panel/SUV	19 372.001
Property Dmg Report	10/8/2009	Day	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Pickup/Van/Panel/SUV	
Property Dmg Report	8/18/2009	Dark, No Street Lights	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Pickup/Van/Panel/SUV	
Property Dmg Report	8/15/2009	Dark, No Street Lights	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Car	15 371.132
B Injury Accident	6/8/2009		Dry	Cloudy	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Car	
Property Dmg Report	9/25/2008	Dark, No Street Lights	Dry	Cloudy	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Car	
Property Dmg Report	9/1/2008	Dark, No Street Lights	Dry	Cloudy	On Roadway	Nonjunction	Animal - Wild		Going Straight	Pickup/Van/Panel/SUV	
Property Dmg Report	6/15/2008	Dark, No Street Lights	Dη	Clear	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Car	
Property Dmg Report	5/18/2008	Dawn or Dusk	Dry	Cloudy	On Roadway	Nonjunction	Animal - Wild	Ascending	Golng Straight	Tractor - 1 Trailer	10 370.500
Property Dmg Report	5/25/2007	Dark, No Street Lights	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Pickup/Van/Panel/SUV	6 370.063
Property Dmg Report	6/19/2006	Day	Dry	Clear	On Roadway	NonJunction	Animal - Wild	Descending	Going Straight	Pickup/Van/Panel/SUV	
Property Dmg Report	12/30/2005	Dark, No Street Lights	Ice	Snow	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Pickup/Van/Panel/SUV	29 374.000
Property Dmg Report	10/30/2005	Dark, No Street Lights	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Pickup/Van/Panel/SUV	
Property Dmg Report	8/23/2005	Dark, No Street Lights	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Tractor - 1 Trailer	12 371.000
Property Dmg Report	8/14/2005	Day	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Motor Home	34 375,000
Property Dmg Report	10/22/2004	Dark, No Street Lights	Wet	Clear	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Pickup/Van/Panel/SUV	37 375.000
Property Dmg Report	10/10/2004	Dark, No Street Lights	Wet	Rain	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Pickup/Van/Panel/SUV	36 375.000
Property Dmg Report	9/7/2004	Dark, No Street Lights	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Pickup/Van/Panel/SUV	38 375.011
Property Dmg Report	7/12/2004	Day	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Pickup/Van/Panel/SUV	21 372.275
Property Dmg Report	6/10/2004	Day	Wet	Rain	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Pickup/Van/Panel/SUV	16 371.170
Property Dmg Report	11/21/2003	Dark, No Street Lights	Snow	Snow	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Tractor - 1 Trailer	9 370.500
A Injury Accident	8/30/2003	Day	ργ	Clear	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Motorcycle	7 370.300
Property Dmg Report	6/29/2003	Dawn or Dusk	Dη	Clear	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Tractor - 1 Trailer	14 371.063
B Injury Accident	6/29/2003	Dawn or Dusk	ργ	Clear	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Pickup/Van/Panel/SUV	1 3 371.063
Property Dmg Report	6/16/2003	Dark, No Street Lights	Σ	Clear	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Tractor - 1 Trailer	35 375.000
Property Dmg Report	5/9/2003	Day	Dγ	Clear	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Pickup/Van/Panel/SUV	5 370.000
Property Dmg Report	11/18/2002	Dark, No Street Lights	lce	Cloudy	On Roadway	Nonjunction	Animal - Wild		Going Straight	Pickup/Van/Panel/SUV	24 372.988
Property Dmg Report	10/16/2002	Dark, No Street Lights	Dη	Clear	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Pickup/Van/Panel/SUV	26 373.800
Property Dmg Report	8/31/2002	Dark, No Street Lights	γQ	Clear	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Pickup/Van/Panel/SUV	22 372.400
B Injury Accident	8/7/2002	Day	ργ	Clear	On Roadway	NonJunction	Animal - Wild	Ascending	Going Straight	Car	30 374.000
C injury Accident	7/3/2002	Dark, No Street Lights	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Pickup/Van/Panei/SUV	18 372,000
Property Dmg Report	9/5/2001	Dark, No Street Lights	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Pickup/Van/Panel/SUV	23 372.563
Property Dmg Report	8/29/2001	Day	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Motor Home	32 374.037
C Injury Accident	8/20/2001	Dark, No Street Lights	Dη	Clear	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Pickup/Van/Panel/SUV	27 373.900
Property Dmg Report	7/20/2001	Dark, No Street Lights	Dη	Clear	On Roadway	NonJunction	Animal - Wild	Ascending	Going Straight	Pickup/Van/Panel/SUV	1 369.000
Property Dmg Report	10/25/2000	Dark, No Street Lights	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Car	28 374.000
Property Dmg Report	9/3/2000	Day	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Ascending	Going Straight	Pickup/Van/Panel/SUV	8 370.500
	7/14/2000	Dark, No Street Lights	Dry	Clear	On Roadway	Nonjunction	Animal - Wild	Descending	Going Straight	Pickup/Van/Panel/SUV	2 369.047
SEACHTA	Jacob Control of Control	- E-61-1	001.000								

Logging 2010

Appendix B.5 Wild Animal Crashes on US-95 in District 2 Between January 1, 2002 and December 31, 2011

Summary of Wild Animal Crashes on US-95 in District 2

The following list of wild animal crashes represents 10 years worth of data on US-95 from January 1, 2002 through December 31, 2011. The following table is a summary of the findings:

Wild Animal Crashes alor	ng US-95 in District 2 betwe	een January 2002 and January 2012.
	Total Number	Percentage of Total
Total Wild Animal Crashes	428	100%
Fatalities	0	0%
Type A Accidents	3	0.7%
Type B Accidents	7	1.6%
Type C Accidents	30	7.0%
Property Damage Only	388	90.6%

Using this data, we assume that about 2% of the wild animal related accidents will involve Type A Accident, Type B Accident, or Fatality and that 10% of wild animal related accidents will involve a fatality or injury.

Segment Code Milepost Listing Report - Wild Life Accidents in D2 Along US-95 from 1/1/02 through 12/31/11

1-36	1-35	1-34	1-33	1-32	1-30	1-29	27-1	1-2/	12	1-25	1-23	1-22	1-21	1-20	1-19	1-18	1-17	1-16	1-15	1-14	1-13	1-12	1-11	1-9	1-8	1-7	1-6	1-5	14	1-3	1-2	1	T
001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	Jegilleit
213.727	213.200	210.700	209.990	209.600	208.600	204.800	204.800	204.500	202.300	196.868	195.003	194.129	193.500	192.200	192.018	192.000	191.000	190.800	190.500	189.300	189.000	188.426	188.300	187.900	187.000	186.900	185,600	185.500	185.000	183.935	183.601	182,700	Secondaria.
Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	SUV/Crossover	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Car	Tractor - 1 Trailer	Pickup/Van/Panel/SUV	Car	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Car	Car	Car	Car	Car	Pickup/Van/Panel/SUV	Activity Abe
Negotiating Curve	Negotiating Curve	Going Straight	Going Straight	Negotiating Curve	Going Straight	Negotiating Curve	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Dilver Action
Descending	Ascending	Ascending	Ascending	Ascending	Descending	Ascending	Descending	Ascending	Descending	Ascending	Ascending	Ascending	Descending	Descending	Ascending	Descending	Ascending	Descending	Ascending	Ascending	Ascending	Ascending	Ascending	Ascending	Descending	Ascending	Descending	Descending	Descending	Ascending	Ascending	Ascending	rque Direction
Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Event T
Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	In Intersection	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Junction
Cloudy	Clear	Clear	Clear	Clear	Clear	Cloudy	Clear	Cloudy	Clear	Clear	Clear	Cloudy	Clear	Clear	Clear	Clear	Cloudy	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Cloudy	Clear	Cloudy	Cloudy	Clear	Rain	Cloudy	Cloudy	Weather
				Dry	Dry	Dry	Dry	Wet	Dry	Dry	Dry	Dry	Dry	Dry	Dη	Dry	Dη	Dry	Dry	Dry	Dry	Wet	Dry	Dη	<u></u>	Dry	Wet	Dry	Dry	Wet	Dη	Dγ	Surface
1/5/2002	8/8/2004	6/3/2002	11/26/2002	6/25/2011	3/13/2004	9/21/2008	10/26/2003	1/17/2011	7/20/2008	5/31/2002	8/26/2005	2/1/2010	4/26/2009	8/14/2004	5/24/2010	10/21/2008	11/16/2005	10/23/2002	12/24/2010	12/29/2006	11/22/2002	11/28/2010	7/4/2002	11/26/2002	12/23/2008	2/18/2002	12/23/2007	3/15/2002	2/18/2008	5/22/2002	2/10/2008	2/16/2009	AccidentDate
Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Severity

1-72	1-71	1-70	1-69	1-68	1-67	1-66	1-65	1-64	1-63		1-62	1-61	1-60	1-59	1-58	1-57	1-56	1-55	1-54	1-53	1-52	1-51	1-50	1-49	1-48	1-47	1-45	1-44	1-43	1-42	1-41	1-40	1-39	1-38	1-3/
001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	OHCTON
254.400	248.000	240.700	240.262	239.800	239.250	239.000	238.943	237.800	236.400	236.082	236.082	234.700	234.438	234.000	232.000	225.000	224.800	224.200	223.100	221.924	221.900	221.717	221.400	221.005	219.600	219.500	219.000	218.590	218.400	217.000	216.700	215.800	215.800	215.000	214.009
SUV/Crossover	Car	SUV/Crossover	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Car	Car	Pickup/Van/Panel/SUV	Tractor - 1 Trailer	Car	Pickup/Van/Panel/SUV	SUV/Crossover	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Car	Car	Pickup/Van/Panel/SUV	Car	Pickup/ vari/ ranel/ SUV									
Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight											
Descending	Ascending	Descending	Ascending	Ascending	Ascending	Descending	Descending	Ascending	Descending	Ascending	Ascending	Ascending	Descending	Ascending	Ascending	Ascending	Ascending	Ascending	Descending	Ascending	Ascending	Ascending	Ascending	Ascending	Descending	Ascending	Ascending	Ascending	Descending	Ascending	Ascending	Ascending	Ascending	Ascending	Ascending
Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animai - wild				
Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction
Clear	Clear	Cloudy	Cloudy	Cloudy	Clear	Clear	Clear	Clear	Cloudy		Cloudy	Clear	Clear	Cloudy	Clear	Clear	Cloudy	Clear	Rain	Cloudy	Clear	Clear	Clear	Clear	Clear	Cloudy	Clear	Clear	Cloudy	Clear	Cloudy	Cloudy	Clear	Cloudy	Clear
D _V	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry		Dη	Dry	Dη	Wet	Dη	γd	Dry	Dry	Wet	Dry	Dry	Dry	Dry	Dry	Dıy	Wet	γrd	γıα	Dry	Pγ	Dry	Dry	Dry	Wet	Dry
8/12/2011	7/18/2007	7/16/2011	10/7/2007	9/16/2004	9/10/2003	7/22/2007	10/20/2010	9/3/2007	9/6/2004	10/31/2010	10/31/2010	8/27/2007	5/14/2008	7/18/2004	5/12/2005	8/14/2008	10/23/2011	7/24/2004	5/1/2010	6/1/2009	5/8/2009	12/1/2002	12/23/2010	6/16/2008	8/21/2010	6/2/2005	10/26/2003	8/30/2003	9/16/2005	6/12/2007	5/1/2003	2/3/2003	8/3/2002	9/2/2004	10/2/2007
Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report				

3-26	3-25	3-24	3-23	3-22	3-21	3-20	3-19	3-18	3-17	3-16	3-13	3-12	3-11	3-10	ů	3-6	3-5	3-4	3-2	<u>3</u> 1	2-10	2-9	2-8	2-7	2-6	2-5	2-4	2-3	2-1	1-78	1-77	1-76	1-75	1-74	1-73
001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	008605	008605	008605	008605	008605	008605	008605	008605	008605	001540	001540	001540	001540	001540	001540
289.000	289.000	288.981	288.400	288.300	287.000	287.000	285.500	285.200	283.800	283.500	279.000	279.000	278.990	278.700	278.000	277.000	276.200	275.766	274.572	274.100	272.000	271.000	270.300	269.758	269.732	269.732	269.700	268.500	266.400	260.180	260.040	259.000	257.912	256.600	256.300
Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Car	Car	Car	Tractor - 1 Trailer	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Car	Car	Pickup/Van/Panel/SUV	Car	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Car	Car	Car	Car	Car	Pickup/Van/Panel/SUV	Car	Car	Car	Pickup/Van/Panel/SUV	Car	Car	Car	Pickup/Van/Panel/SUV	Pickup	Pickup/Van/Panel/SUV
Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Negotiating Curve	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve
Ascending	Descending	Descending	Ascending	Descending	Descending	Ascending	Ascending	Ascending	Ascending	Descending	Ascending	Ascending	Ascending	Descending	Ascending	Ascending	Descending	Ascending	Descending	Ascending	Ascending	Ascending	Descending	Descending	Ascending	Descending	Ascending	Ascending	Ascending	Descending	Descending	Descending	Descending	Ascending	Descending
Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild
Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction
Clear	Clear	Cloudy	Clear	Clear	Cloudy	Clear	Clear	Clear	Cloudy	Clear	Cloudy	Clear	Cloudy	Clear	Clear	Clear	Clear	Clear	Rain	Cloudy	Cloudy	Clear	Cloudy	Clear	Cloudy	Cloudy	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear
Dγ	Dγ	Dη	Dry	Pγ	Dη	Wet	Dry	Dry	Wet	Dη	γQ	Dry	Wet	γď	Dry	Dη	Dry	Dry	Wet	Dγ	Dry	Dry	ργ	Ργ	Pγ	ργ	Dry	γQ	Dry	Dry	Dη	Dry	γO	Dry	Dry
10/30/2005	10/30/2005	6/15/2007	5/19/2003	5/10/2008	9/17/2004	11/28/2002	11/6/2004	8/6/2008	11/9/2002	11/16/2006	11/17/2010	8/5/2004	10/14/2008	8/8/2003	5/31/2005	6/27/2006	10/17/2009	7/19/2010	5/25/2003	10/25/2005	7/13/2009	5/12/2006	9/18/2004	8/12/2007	4/19/2007	3/24/2007	7/18/2008	10/9/2009	4/30/2004	9/3/2005	6/8/2003	7/2/2009	7/9/2010	7/15/2011	9/27/2005
Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report

3-63	3-62	3-61	3-59	3-58	3-57	3-56	3-55	3-54	3-53	3-52	3-51	3-50	3-49	3-48	3-47	3-46	3-45	3-44	3-43	3-42	3-41	3-40	3-39	3-38	3-37	3-36	3-35	3-34	3-33	3-32	3-31	3-30	3-29	3-28	3-2/
001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	04CT00 /7-6
303.500	303.100	303.000	302.800	302.700	302.500	301.000	298.600	298.039	296.743	296.100	295.800	295.600	295.000	294.900	294.700	294.500	294.500	294.500	294.100	293.900	293.600	293.500	293.300	293.300	293.150	292.200	292.156	292.000	291.914	291.900	291.500	291.500	291.400	290.500	203.000
Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Car	Car	Pickup	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup	Car	Car	Car	car						
Negotiating Curve	Going Straight	Negotiating Curve	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Avoiding Obstacle	Going Straight	Going Straight	Going Straight	Going Straight	Coung Straight
Descending	Descending	Ascending	Descending	Descending	Descending	Ascending	Descending	Descending	Descending	Ascending	Descending	Ascending	Ascending	Ascending	Descending	Ascending	Ascending	Ascending	Descending	Ascending	Descending	Ascending	Descending	Ascending	Descending	Ascending	Ascending	Ascending	Ascending	Ascending	Ascending	Descending	Descending	Descending	Ascending
Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animai - Wild
Noniunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction
Clasr	Cloudy	Clear	Cloudy	Clear	Cloudy	Clear	Clear	Clear	Clear	Clear	Clear	Cloudy	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Cloudy	Cloudy	Cloudy	Clear	Fog	Clear	Clear	Cloudy	Cloudy	Rain	Clear	Clear	Clear	Cloudy
? .	Dry	Dη	Dry	Dη	Dry	Dry	Dry	Dry	Dη	Dry	Dry	Dη	ργ	Dη	Dry	Dη	Dry	Dη	Dry	Dry	νd	γI	ργ	Dry	Dγ	Wet	Dry	Dγ	Dry	γď	Wet	Dry	ργ	Dry	Dry
11/24/2007	11/14/2004	8/7/2005	5/8/2008	12/29/2008	6/20/2003	5/12/2006	6/12/2005	9/16/2010	7/10/2003	7/12/2005	10/14/2008	6/12/2011	3/14/2007	6/21/2008	2/22/2008	1/24/2005	7/27/2004	5/1/2002	9/9/2003	7/4/2008	6/24/2006	4/19/2005	12/7/2002	12/4/2002	12/6/2003	10/31/2008	9/25/2010	3/15/2004	9/10/2003	10/5/2003	4/25/2011	7/17/2006	11/13/2002	8/19/2011	10/7/2005
Droporty Dwg Boost	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report

3-103		3-101	3-100	3-98	3-97	3-96	3-95	3-94	3-93	3-91	3-90	3-88	3-87	3-86	3-85	3-84	3-83	3-82	3-81	3-80	3-79	3-78	3-77	3-76	3-75	3-74	3-73	3-72	3-71	3-70	3-69	3-68	3-67	3-66	3-65
001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540
311.000	310.962	310.800	310.500	309.900	309.700	309.500	309.433	309.400	309.100	308.999	308.976	308.800	308.700	308.700	308.680	308.600	308.600	308.500	308.400	307.500	307.300	307.100	306.800	306.700	306.500	306.000	306.000	305.800	305.800	305.800	304.900	304.900	303.900	303.800	303.700
Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup Camper	Pickup/Van/Panel/SUV	SUV/Crossover	Pickup/Van/Panel/SUV	Car	Motorcycle	Car	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Motorcycle	Pickup/Van/Panel/SUV	Car	Car	Car	Car	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panei/SUV	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Car	Car	Car	Car	Car
Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Negotiating Curve	Negotiating Curve	Negotiating Curve	Negotiating Curve	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Negotiating Curve	Going Straight	Going Straight	Negotiating Curve	Going Straight	Negotiating Curve				
Descending	Ascending	Ascending	Ascending	Ascending	Ascending	Descending	Descending	Ascending	Descending	Ascending	Ascending	Descending	Ascending	Ascending	Ascending	Ascending	Ascending	Descending	Descending	Ascending	Ascending	Descending	Descending	Ascending	Ascending	Descending	Descending	Descending	Ascending	Ascending	Ascending	Ascending	Ascending	Descending	Descending
Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild
Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	In Intersection	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction
Cloudy	Clear	Clear	Clear	Clear	Cloudy	Clear	Cloudy	Clear	Clear	Clear	Clear	Clear	Cloudy	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Cloudy	Cloudy	Clear	Clear	Clear	Clear	Clear
Pγ	Dry	Dry	Dry	Dry	Dry	Dry	Dη	Dry	Dry	Dry	Dry	Dry	Wet	Dry	Dry	Dry	Dry	Dry	Dry	Dη	Dry	Dry	Dry	Wet	Dry	Dry	Dry	Dry	Snow	Snow	Dry	γıα	Dηγ	Dη	Dry
3/30/2008	6/2/2004	7/3/2011	6/28/2010	6/12/2003	10/6/2005	11/3/2002	6/10/2007	5/4/2011	8/19/2006	2/7/2010	8/5/2011	6/16/2008	2/14/2009	6/12/2008	6/18/2010	9/27/2010	5/10/2006	8/29/2008	7/13/2003	5/13/2006	6/11/2009	5/5/2008	5/11/2010	3/6/2006	4/21/2003	6/2/2004	6/11/2003	9/22/2010	12/23/2008	12/23/2008	9/1/2011	6/5/2004	6/8/2005	11/6/2002	9/28/2010
Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report

001539 323.971 Pickup/Van/Panel/SUV
001540 320.900 Car
320 900
Non
Negotiating Curve
Descending
Animal - Wild
d Nonjunction
Clear
) V
//9/2011
Property Dmg Report

5-30	5-29	5-28	5-27	5-26	5-25	5-24	5-23		5-22	5-21	5-20	5-19	5-18	5-17	5-16	5-15	5-14	5-13	5-11	5-10	5-9	5-8	5-7	5-6	5-5	5-2		5-1	4-11	4-9	4-8	4-7	46	4-4	4 3
001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001539	001539	001539	001539	001539	001539	CECTON
343.100	342.857	342,700	342.000	341.981	341.900	341.900	341.800	341.335	341.335	341.200	340.994	340.900	340.500	340.500	340.400	340.300	340.300	339.850	339.500	339.500	339.100	338.991	338.981	338.800	338.800	338.056	337.973	337.973	337.500	336.600	335.300	334.500	334.003	324.800	324.200
Car	Car	Car	Pickup/Van/Panel/SUV	Car	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Car	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Car	Pickup/Van/Panel/SUV	Car	Car	Pickup	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Car	Car	Car	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car
Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Negotiating Curve	Going Straight	Negotiating Curve	Negotiating Curve	Going Straight	Turning Left	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight
Ascending	Descending	Descending	Descending	Descending	Ascending	Ascending	Descending	Descending	Descending	Descending	Ascending	Descending	Descending	Ascending	Descending	Descending	Descending	Ascending	Descending	Ascending	Ascending	Ascending	Ascending	Descending	Descending	Descending	Descending	Descending	Descending	Descending	Descending	Ascending	Descending	Ascending	Ascending
Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animai - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild
Noniunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	In Intersection	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction
Rain	Clear	Clear	Clear	Cloudy	Clear	Clear	Cloudy		Cloudy	Clear	Clear	Cloudy	Clear			Clear	Cloudy	Clear	Cloudy	Clear	Clear	Cloudy	Clear	Clear	Cloudy	Clear		Clear	Clear	Clear	Cloudy	Clear	Cloudy	Clear	Clear
Wet	Pγ	ργ	Dry	₩et	Dry	Dry	Dry		Wet	Dry	Dη	Dry	Dıy	Wet	Dη	ργ	Dry	Dry	Dη	Dη	Dry	Dη	Dry	Dry	Dry	Dry		γd	Dγ	γo	Dη	Dry	Dη	Dη	Dry
1/30/2003	7/13/2005	9/1/2004	3/12/2009	10/29/2002	3/11/2009	8/15/2005	6/10/2003	1/23/2009	1/23/2009	6/30/2010	7/17/2006	4/14/2008	1/29/2009	7/8/2003	2/18/2009	3/12/2004	3/25/2002	4/9/2011	8/15/2009	11/19/2005	7/5/2007	10/9/2011	5/8/2008	7/16/2010	10/15/2007	9/15/2008	4/16/2010	4/16/2010	9/7/2006	1/9/2009	3/3/2009	8/7/2010	9/30/2009	7/15/2010	7/2/2010
Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report

50.60 50.60	ស្ត្រស្ត្រស្ត្រស្ត្រស្ត្រ	350.100 350.400 350.400 350.500 350.500 350.500 350.500 350.500 350.600 350.600	50.0 50.0 50.0 50.1 50.1 50.1 50.1 50.1] ໝ ໝ ໝ ໝ ໝ ໝ ໝ ໝ ໝ ໝ	
				cup/Van/Panel/SUV cup/Van/Panel/SUV cup/Van/Panel/SUV cup/Van/Panel/SUV cup/Van/Panel/SUV cup/Van/Panel/SUV cup/Van/Panel/SUV cup/Van/Panel/SUV cup/Van/Panel/SUV	cup/Van/Panel/SUV	up/Van/Panel/SUV cup/Van/Panel/SUV
			JIVe	JIVe	JIVe	Irve
Cuscoling 3						
_						
Nonjunction Nonjunction						
	7 7					
2/7/2009 10/23/2009 5/17/2004						
Property Dmg Report Property Dmg Report	T I	7 7 8 8 8 8 9 9 9			P P P P P P P P P P	Property Dmg Report

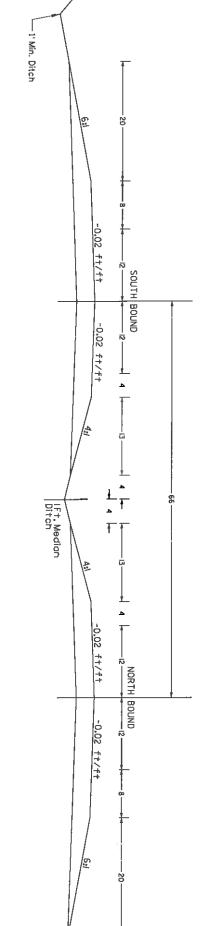
6-81	6-80	6-79	6-78	6-76	6-75	6-74	6-71	6-69	6-68	6-67	6-66	6-65	6-63	6-62	6-60	6-59	6-58	6-57	6-56	6-55	6-54	6-53	6-52	6-51	6-50	6-49	6-48	6-47	6-46	6-45	6-44	6-43	6-42	6-41	6-40
001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540
358.724	358.197	358.000	358.000	357.500	357.100	356.700	356.018	356.005	355.500	355.430	355.100	354.705	354.100	353.636	352.800	352,400	352.300	352.300	352.200	352.100	352.000	351.965	351.800	351.500	351.500	351.400	351.400	351.300	351.200	351.100	351.070	351.000	351.000	351.000	351.000
Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Car	Pickup/Van/Panel/SUV	SUV/Crossover	SUV/Crossover	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Car	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Car	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car
Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Turning Left	Negotiating Curve	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight
Descending	Descending	Ascending	Descending	Ascending	Ascending	Descending	Descending	Descending	Ascending	Ascending	Descending	Descending	Ascending	Descending	Ascending	Descending	Descending	Ascending	Ascending	Ascending	Ascending	Ascending	Ascending	Descending	Ascending	Descending	Descending	Ascending	Descending	Ascending	Ascending	Ascending	Descending	Descending	Ascending
Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animai - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild
Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Related	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction
Cloudy	Clear	Clear	Cloudy	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Cloudy	Cloudy	Clear	Cloudy	Clear	Clear		Clear	Cloudy	Clear	Clear	Clear	Clear	Clear	Cloudy	Clear	Cloudy	Clear	Clear	Clear	Clear	Clear
Dry	Dη	Wet	Wet	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Pγ	Dry	Dry	Dry	Dry	Dry	Wet	Dry	Dry		Dη	Dry	Dη	Dry	γd	ργ	Dry	Dη	Dry	Wet	Dry	Dry	Dη	γId	Pγ
10/9/2008	6/22/2003	12/19/2003	5/29/2002	6/24/2009	7/11/2005	9/14/2003	7/22/2009	6/28/2010	3/23/2011	10/25/2011	8/26/2005	11/3/2003	7/26/2005	6/12/2003	7/1/2010	8/15/2011	12/28/2003	6/26/2006	10/6/2007	8/26/2008	10/12/2002	7/5/2009	7/24/2010	12/1/2009	12/1/2009	9/29/2011	10/29/2005	2/6/2009	11/4/2009	12/15/2002	5/16/2009	12/5/2008	6/1/2003	10/4/2002	11/11/2005
Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report

6-118	6-117	6-116	6-115	6-114	6-112	6-111	6-110	6-109	6-108	6-107	6-106	6-105	6-104	6-103	6-102	6-101	6-100	6-99	6-98	6-97	6-96	6-95	6-94	6-93	6-92	6-91	6-90	6-89	6-88	6-87	6-86	6-85	6-84	6-83	6-82
001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540
365.800	365.650	365.500	365.500	365.500	365.000	363.800	363.780	363.687	363.500	362,600	362.500	362.500	362.100	362.000	361.724	361.480	361.200	361.200	361.000	360.994	360.981	360.800	360.611	360.300	360.020	360.001	359.770	359.700	359.500	359.500	359.200	358.981	358.976	358.900	358.800
Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Car	Car	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Car	Pickup/Van/Panel/SUV	Car	Car	Pickup	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Pickup	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV
Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Negotiating Curve	Going Straight	Going Straight	Going Straight								
Ascending	Descending	Ascending	Descending	Ascending	Descending	Ascending	Ascending	Descending	Ascending	Descending	Ascending	Descending	Ascending	Descending	Ascending	Ascending	Descending	Ascending	Ascending	Descending	Ascending	Descending	Descending	Ascending	Descending	Descending	Ascending	Descending	Descending	Descending	Descending	Ascending	Ascending	Descending	Ascending
Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild
Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction
Clear	Clear	Cloudy	Cloudy	Cloudy		Rain	Rain	Clear	Rain	Clear	Cloudy	Cloudy	Cloudy	Snow	Clear	Clear	Rain	Clear	Clear	Clear	Clear	Cloudy	Clear	Cloudy	Clear	Snow	Clear	Clear	Clear	Cloudy	Clear	Clear	Cloudy	Clear	Clear
Dry	Dγ	Dry	Dry	Wet	Dry	Wet	Wet	Dry	Wet	Dry	Pγ	Dγ	Wet	Wet	Dry	Dry	Wet	Dry	Dry	Dry	νd	Pγ	ργ	Dry	Dγ	Snow	Dγ	ρη	Dry	Dry	Dry	ρη	Dη	νd	γQ
11/3/2007	4/12/2004	11/15/2008	11/19/2007	3/15/2007	8/28/2005	5/6/2011	10/1/2011	6/7/2003	11/12/2007	4/2/2004	1/31/2009	11/20/2004	12/20/2009	12/11/2003	6/30/2007	5/24/2006	10/29/2009	11/14/2003	1/12/2009	10/1/2004	3/6/2010	11/15/2005	9/21/2011	9/17/2005	5/25/2010	11/25/2006	10/31/2009	8/31/2011	9/9/2004	10/12/2007	9/10/2009	10/22/2008	5/14/2008	7/26/2009	9/25/2004
Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report

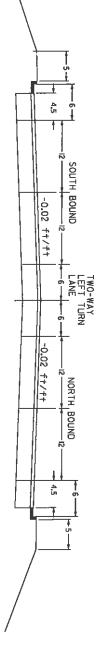
1-24	1-10	6-15/	6-156	0-155	0-154	6-153	6-152			6-147	6-146	6-145	6-144	6-142	6-141	6-140	6-139	6-138	6-137	6-136	6-135	6-134	6-132	6-130	6-129	6-128	6-127	6-126	6-125	6-124	6-123	6-122	6-121	6-120	6-119
001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540		001540	001540	6-140 001540	001540	6-138 001540	6-137 001540	6-136 001540	6-135 001540	6-134 001540	6-132 001540	6-130 001540	6-129 001540	6-128 001540	6-127 001540	6-126 001540	6-125 001540	6-124 001540	6-123 001540	6-122 001540	6-121 001540	6-120 001540	6-119 001540
195.184	188.000	3/1.400	371.200	3/1.100	3/1.050	371.000	371.000	3/0.028	370.000	369.800	369.700	369.600	369.568	369.300	369.100	369.050	368.900	368.800	368.700	368.700	368.500	368.300	368.100	368.000	368.000	368.000	368.000	367.900	367.500	367.400	367.300	367.200	367.100	366.800	365.900
Motorcycle	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Car	Car	Pickup/Van/Panel/SUV	Car	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	SUV/Crossover	Car	Car	Car	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Truck With Trailer	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Tractor - 2 Trailers
Negotiating Curve	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Negotiating Curve	Negotiating Curve	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve
Ascending	Descending	Descending	Ascending	Descending	Ascending	Ascending	Descending	Ascending	Descending	Ascending	Ascending	Ascending	Descending	Descending	Descending	Descending	Descending	Descending	Ascending	Ascending	Ascending	Descending	Descending	Descending	Descending	Descending	Ascending	Ascending	Ascending	Descending	Descending	Ascending	Descending	Descending	Descending
Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild
Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction
Clear	Clear	Clear	Cloudy	Clear	Clear	Cloudy	Clear	Clear	Cloudy	Clear	Clear	Cloudy	Clear	Cloudy	Rain	Clear	Cloudy	Clear	Clear	Snow	Rain	Clear	Rain	Clear	Cloudy	Cloudy	Rain	Cloudy	Clear	Clear	Clear	Cloudy	Cloudy	Cloudy	Clear
Dry	Dγ	Dry	Dry	Dry	Dγ	Wet	Dry	Wet	Wet	Dry	Dry	Dry	Dη	Wet	Wet	γQ	Dry	Dγ	Dry	ice i	Wet	Dry	Wet	Ρη	Wet	Dη	Wet	Wet	Dry	Dry	γQ	Dγ	γū	Wet	Dry
10/18/2002	1/23/2006	5/24/2009	9/9/2010	9/28/2010	6/26/2011	1/4/2010	11/16/2002	10/13/2007	3/16/2002	7/5/2008	7/8/2010	9/21/2008	5/6/2006	3/4/2007	4/16/2011	6/6/2010	12/5/2004	5/30/2011	7/17/2008	12/30/2007	2/22/2009	3/27/2003	4/30/2010	4/19/2009	1/10/2009	11/22/2007	5/10/2005	10/28/2010	2/21/2009	1/12/2002	5/16/2002	11/19/2006	9/18/2003	12/1/2008	10/30/2007
C Injury Accident	C Injury Accident	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report	Property Dmg Report

662	6-131	4-5	3-139	3-130	3-121	3-92	3-15	6-151	6-143	6-133	6-77	6-73	6-72	6-70	6-61	6-35	6-31	6-22	5-31	5-12	5-4	5-3	4-10	3-122	3-99	3-89	3-64	3-60	3-14	3-9	3-7	3-3	2-2	1-46	1-31
001540	001540		-			001540	001540			001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001540	001539	001540	001540	001540	001540	001540	001540	001540	001540	001540	008605	001540	001540
354.596	368.003	328,400	319,600	318.500	315.000	309,000	283.004	370.300	369.400	368.100	357.800	356.100	356.100	356.013	353.617	350.700	350.600	350.346	343.100	339.800	338.200	338.100	337.180	315.024	310.300	308.800	303.700	302.995	281,400	278.520	277.500	275.100	268.100	219.200	208.900
Car	Car	Pickup/Van/Panel/SUV	Car	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	SUV/Crossover	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Pickup/Van/Panel/SUV	Car	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Car	SUV/Crossover	Car	Pickup/Van/Panel/SUV	Pickup/Van/Panel/SUV	Car	Car						
Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Going Straight	Negotiating Curve	Negotiating Curve	Negotiating Curve	Going Straight	Going Straight	Going Straight	Negotiating Curve	Negotiating Curve	Going Straight	Going Straight	Going Straight	Negotiating Curve	Negotiating Curve	Negotiating Curve
Ascending	Descending	Descending	Ascending	Ascending	Descending	Ascending	Ascending	Ascending	Descending	Descending	Ascending	Ascending	Ascending	Ascending	Descending	Descending	Ascending	Ascending	Ascending	Ascending	Descending	Ascending	Descending	Ascending	Ascending	Descending	Descending	Descending	Descending	Descending	Descending	Descending	Descending	Ascending	Descending
Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild	Animal - Wild
Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	in intersection	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction	Nonjunction
Clear	Clear	Clear	Clear	Cloudy	Clear	Clear	Clear	Clear	Cloudy	Clear	Clear	Clear	Cloudy	Clear	Clear	Clear	Clear	Cloudy	Clear	Cloudy	Clear			Cloudy	Clear	Cloudy	Clear	Clear	Cloudy	Clear	Cloudy	Clear	Clear	Cloudy	Clear
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	ργ	Pγ	Wet	Dry	Dη	Dη	ργ	Wet	Dη	Wet	Dη	Dry	Wet	Dıy	ρĮ	<u>Β</u> .	ργ	Dγ	Dıy	Dīy	Wet	Dη	Ŋ,	Dη	Dη
11/11/2002	7/8/2007	8/7/2010	6/18/2004	11/17/2008	5/15/2008	10/3/2004	5/10/2008	9/10/2010	7/13/2002	12/15/2010	8/23/2007	9/27/2011	4/5/2010	9/18/2002	6/14/2002	10/20/2006	2/17/2008	12/14/2010	7/25/2004	10/1/2005	10/25/2007	10/25/2010	1/7/2009	10/24/2007	10/12/2006	11/4/2008	1/23/2008	10/29/2003	11/1/2009	9/23/2011	5/30/2004	6/19/2007	12/25/2009	6/28/2002	9/15/2006
A Injury Accident	B Injury Accident	B Injury Accident	B Injury Accident	B Injury Accident	B Injury Accident	B Injury Accident	B Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident	C Injury Accident

6-150	6-113
6-150 001540	6-113 001540
370.300	0 365.200 Car
Motorcycle	Car
Going Straight	Going Straight
Ascending	Descending
Animal - Wild	Animal - Wild
Nonjunction	Nonjunction
Clear	Clear
Dry	Dry
5/23/2005	9/11/2008
A Injury Accident	A Injury Accident


Appendix C.1 Typical Sections, AASHTO HSM Calculations, and Results For Alignment E2

E-2 TYPICAL SECTIONS


RURAL SECTION

Milepost 337.668 to Milepost 343.282

URBAN SECTION

Milepost 343.282 to Milepost 343.518

Worksheet 1	A General Information and Input Da	ia for Rural Multilane Roadwa	ay Segments
General Information			Location Information
Analyst	Curtis J. Arnzen	Roadway	US-95, Thorncreek to Moscow
Agency or Company	ITD D2	Roadway Section	E2 Rural - Divided
Date Performed	03/10/12	Jurisdiction	Latah Co, ID
		Analysis Year	2017
Input Data		Base Conditions	Site Conditions
Roadway type (divided / undivided)		Undivided	Divided
Length of segment, L (mi)			5,61
AADT (veh/day)	AADT _{M/X} = 89,300 (veh/day)	-	5,920
Lane width (ft)		12	Telephone and the second secon
Shoulder width (ft) - right shoulder width for divided [if differ for a	lirections of travel, use average width)	8	
Shoulder type - right shoulder type for divided	<u> </u>	Paved	Print
Median width (ft) - for divided only		30	40
Side Slopes - for undivided only		1:7 or flatter	Not Applicable
Lighting (present/not present)		Not Present	Shirt Pressuret
Auto speed enforcement (present/not present)		Not Present	New Principal
Calibration Factor, Cr	.	1.00	1.00

	Worksheet 1B (a) – Crash Modification Factors for Rural Multilane Divided Roadway Segments											
(1)	(2)	(3)	(4)	(5)	(6)							
CMF for Lane Width	CMF for Right Shoulder Width	CMF for Median Width	CMF for Lighting	CMF for Automated Speed	Combined CMF							
				Enforcement								
CMF 1rd	CMF 2rd	CMF 3rd	CMF 4rd	CMF 5rd	CMF comb							
from Equation 11-16	from Table 11-17	from Table 11-18	from Equation 11-17	from Section 11.7.2	(1)*(2)*(3)*(4)*(5)							
1.00	1.00	0,99	1.00	1.00	0.99							

	1	Worksheet 1C	(a) – Roadwa	y Segment Crashes for I	Rural Multijane Divided i	Roadway Segments												
(1)		(2)		(3)	(4)	(5)	(6)	(7)										
Crash Severity Level	S	SPF Coefficients				SPF Coefficients		SPF Coefficients		SPF Coefficients		SPF Coefficients		N spf rd	Overdispersion	Combined CMFs	Calibration	Predicted average crash
	from Table 11-5			Parameter, k	(6) from Worksheet	Factor, Cr	frequency, N predicted re(d)											
	a	b		from Equation 11-9	from Equation 11-10	1B (a)		(3)*(5)*(6)										
Total	-9.025	1.049	1.549	6.118	0.038	0.99	1.00	6.057										
Fatal and injury (FI)	-8.837	0.958	1.687	3.350	0,033	0.99	1.00	3.316										
Fatal and Injury* (FI*)	-8.505	0.874	1.740	2.251	0.031	0.99	1.00	2.228										
Property Damage Only (PDO)	_	_	ı			_	-	(7) _{TOTAL} - (7) _{FI} 2.741										

NOTE: "Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision		Proportion of Collision Type(Fi)	N predicted re(d) (FI) (crashes/year)	Proportion of Collision		Proportion of Collision	N predicted re(d) (PDO) (crashes/year)
		(7) тотац from Worksheet 1C (a)		(7) _{FI} from Worksheet 1C (a)	from Table 11-6	(7) _{Fl} from Worksheet 1C (a)	from Table 11-6	(7)=== from Worksheet 10 (a)
Total	1.000	6.057	1.000	3.316	1.000	2.228	1.000	2,741
	1	(2)*(3) _{TOTAL}		(4)x(5) _{FI}		(6)*(7) _{EL} *		(8)*(9) PDO
Head-on collision	0.006	0.036	0.013	0.043	0.018	0,040	0.002	0.005
Sideswipe collision	0.043	0.260	0,027	0.090	0.022	0.049	0.053	0.145
Rear-end collision	0.116	0.703	0,163	0.541	0.114	0.254	0.088	0.241
Angle collision	0.043	0.260	0.048	0.159	0.045	0,100	0.041	0.112
Single-vehicle collision	0.768	4.652	0.727	2.411	0.778	1.733	0.792	2.171
Other collision	0.024	0,145	0.022	0.073	0.023	0.051	0,024	0.066

NOTE: "Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

	Worksheet 1E - Summary Results for Rural Multila	ne Roadway Segments	· · · · · · · · · · · · · · · · · · ·										
(1)	(1) (2) (3) (4)												
Crash severity level	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes/mi/year)										
	(7) from Worksheet 1C (a) or (b)	7	(2)/(3)										
Total	6.1	5.6	1.1										
Fatal and Injury (FI)	3.3	5.6	0.6										
Fatal and Injury ^a (Fl ^a)	2.2	5.6	0.4										
Property Damage Only (PDO)	2.7	5.6	0.5										

NOTE: * Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

General	Information		Location information
Analyst	Curtis J. Arnzen	Roadway	US-95, Thorncreek to Moscow
Agency or Company	Idaho Transportation Dept. D2	Roadway Section	E2, Suburban
Date Performed	03/10/12	Jurisdiction	Latah County, Idaho
	55.75.12	Analysis Year	2017
Inpo	ıt Data	Base Conditions	Site Conditions
Roadway type (2U, 3T, 4U, 4D, ST)		_	3[
Length of segment, L (mi)			0.24
AADT (veh/day)	AADT _{M-X} = 53,30? (veh/day)	-	7,465
Type of on-street parking (none/parallel/angle)		None	Ny g
Proportion of curb length with on-street parking			0
Median width (ft) - for divided only		15	Not Prepare
Lighting (present / not present)		Not Present	Printel
Auto speed enforcement (present / not present)		Not Present	NAM Present
Major commercial driveways (number)		s	2
Minor commercial driveways (number)			3
Major industrial / institutional driveways (number)		_	0
Minor industrial / institutional driveways (number)			0
Major residential driveways (number)			0
Minor residential driveways (number)			2
Other driveways (number)			D
Speed Category			Postini Seed Greenic than St riph
Roadside fixed object density (fixed objects / mi)		0	
Offset to roadside fixed objects (ft) [If greater than	30 or Not Present, Input 30]	30_	30
Calibration Factor, Cr	·	1.00	1.00

	Worksheet 1B - Cra	Worksheet 1B – Crash Modification Factors for Urban and Suburban Roadway Segments											
(1)	(2)	(3)	(4)	(5)	(6)								
CMF for On-Street Parking	CMF for Roadside Fixed Objects	CMF for Median Width	CMF for Lighting	CMF for Automated Speed Enforcement	Combined CMF								
CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMF 5r	CMF comb								
from Equation 12-32	from Equation 12-33	from Table 12-22	from Equation 12-34	from Section 12.7.1	(1)*(2)*(3)*(4)*(5)								
1.00	1.00	1.00	0.94	1.00	0.94								

	Workshee	t 1C Multip	le-Vehicte Nondriveway Co	ollisions by Severity Level	for Urban and Suburba	n Roadway S	egments			
(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Crash Severity Level	SPF Coefficients		Overdispersion Parameter, k	Initial N _{berny}	Proportion of Total Crashes	Adjusted N _{brmv}	Combined CMFs	Calibration Factor, Cr	Predicted N _{brmv}	
	from Ta	ble 12-3 b	from Table 12-3	from Equation 12-10		(4) _{TOTAL} *(5)	(6) from Worksheet 1B	ĺ	(6)*(7)*(8)	
Total	-9.70	1.17	0.81	0,500	1.000	0.500	0.94	1.00	0.470	
Fatal and Injury (FI)	-10.47	1.12	0.62	0.148	(4) _{Fi} /((4) _{Fi} +(4) _{PDO}) 0.280	0.140	0.94	1.00	0.132	
Property Damage Only (PDO)	-9.97	1,17	0.88	0.382	(5) _{TOTAL} -(5) _{FI} 0.720	0,360	0.94	1.00	0.339	

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type _(Fi)	Predicted N terry (FI) (crashes/year)	Proportion of Collision Type _(PDO)	Predicted N bring (PDO) (crashes/year)	Predicted N home (TOTAL) (crashes/year
	from Table 12-4	(9)n from Worksheet 1C	from Table 12-4	(9)roo from Worksheet 1C	(9)TOTAL from Worksheet 1C
otal	1.000	0.132	1.000	0.339	0.470
		(2)*(3) _{FI}		(4)*(5) _{PDO}	(3)+(5)
Rear-end collision	0.846	0.111	0.651	0.220	0,332
lead-on collision	0.021	0.003	0.004	0,001	0.004
ingle collision	0.050	0.007	0,059	0.020	0.027
ideswipe, same direction	0.061	0,008	0.248	0.084	0,092
ideswipe, opposite direction	0.004	0.001	0.009	0,003	0.004
Other multiple-vehicle collision	0.018	0.002	0.029	0,010	0.012

	W	orksheet 1E -	- Single-Vehicle Collisions	by Severity Level for Urb	an and Suburban Road	way Segment	8		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Crash Severity Level	SPF Coefficients		Overdispersion Parameter, k	Inftial N _{brav}	Proportion of Total Crashes	Adjusted N _{brev}	Combined CMFs	Calibration Factor, Cr	Predicted N _{brsv}
Clash Seventy Level	from Ta	ble 12-5 b	from Table 12-5	from Equation 12-13		(4) _{TOTAL} *(5)	(6) from Worksheet 1B		(6)*(7)*(8)
Total	-4.82	0.54	0.52	0.239	1,000	0.239	0.94	1.00	0.225
Fatal and injury (FI)	-4.43	0.35	0.36	0.065	(4) _{Fl} /((4) _{Fl} +(4) _{PDO}) 0.285	0.068	0.94	1.00	0.064
Property Damage Only (PDO)	-5.83	0.61	0.55	0.162	(5) _{TOTAL} -(5) _F ; 0.715	0.171	0.94	1.00	0.161

w	Worksheet 1F Single-Vehicle Collisions by Collision Type for Urban and Suburban Roadway Segments									
(1) (2) (3) (4) (5) (6)										
Collision Type	Proportion of Collision Type _(Fi)	Predicted N hav (FI) {crashes/year}	Proportion of Collision Type (PDO)	Predicted N Mary (PDO) (crashes/year)	Predicted N _{brev (TOTAL)} (crashes/year)					
	from Table 12-6	(9)FI from Worksheet 1E	from Table 12-6	(9)eoo from Worksheet 1E	(9)TOTAL from Worksheet 1E					
Total	1,000	0.064	1.000	0.161	0.225					

•

		(2)*(3) _{FI}		(4)*(5) _{PDO}	(3)+(5)
Collision with animal	0.016	0.001	0.049	0.008	0.009
Collision with fixed object	0.398	0.026	0.768	0.123	C.149
Collision with other object	0.005	0,000	0.061	0.010	0.010
Other single-vehicle collision	0.581	0,037	0.122	0.020	0.057

Work	sheet 1G Multiple-Vehicle Drive	way-Related Collisions by	Driveway Type for Urban	and Suburban Roadway Segments		
(1)	(2)	(3) Crashes per driveway	(4) Coefficient for traffic	(5)	(6) Overdispersion	
	Number of driveways,	per year, N	adjustment, t	Initial N _{brdwy}	parameter, k	
Driveway Type	n _i	from Table 12-7	from Table 12-7	Equation 12-16	from Table 12-7	
		· ITOM Table 12-7		n _j * N _j * (AADT/15,000) ^t	Holl Table 12-7	
/lajor commercial	2	0.165	1.172	0.146		
Ainor commercial	3	0.053	1.172	0.070		
lajor industrial/institutional	0	0.181	1.172	0.000		
finor industrial/institutional	0	0,024	1.172	0.000	99	
fajor residential	0	0.087	1.172	0.000		
Ainor residential	2	0.016	1.172	0.014		
Other	0	0.027	1.172	0.000	7	
otal	_		-	0.230	0.10	

Worksheet 1	Worksheat 1H Multiple-Vehicle Driveway-Related Collisions by Severity Level for Urban and Suburban Roadway Segments											
(1)	(2)	(3)	(4)	(5)	(6)	(7)						
Cash Carrelle I ared	initial N _{browy}	Proportion of total crashes (f _{dwy})	Adjusted N _{brdwy}	Combined CMFs	Calibration factor, C.	Predicted N _{brdwy}						
Crash Severity Level	(5) _{TOTAL} from Worksheet 1G	from Table 12-7	(2) _{TOTAL} * (3)	(6) from Worksheet 1B	Calibration factor, C,	(4)*(5)*(6)						
otal	0.230	1,000	0.230	0,94	1.00	0.216						
atal and injury (FI)		0.269	0.062	0.94	1.00	0.058						
roperty damage only (PDO)		0.731	0.168	0.94	1.00	0.158						

	Worksheet 1! — Vehicle-Pedestrian Collisions for Urban and Suburban Roadway Segments									
(1)	(1) (2) (3) (4) (5) (6)									
	Predicted N _{brmv}	Predicted N _{brav}	Predicted N _{brdwy}	Predicted N _{br}	fpedr	Calibration	Predicted N _{ped}			
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3)+(4)	from Table 12-8	factor, C,	(5)*(6)*(7)			
Total	0.470	0.225	0.216	0.911	0.023	f.00	0.021			
Fatal and injury (Ft)		1	-		_	1.00	0.021			

	Worksheet 1.J Vehicle-Bicycle Collisions for Urban and Suburban Roadway Segments									
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
	Predicted N _{brmv}	Predicted N _{bray}	Predicted N _{brown}	Predicted N _{br}	f _{blker}	Calibration	Predicted Notices			
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3)+(4)	from Table 12-9	factor, C _r	(5)*(6)*(7)			
otal	0.470	0.225	0.216	0.911	0,012	1.00	0.011			
atal and injury (FI)	_	1	-	-	-	1.00	0.011			

Workshee	t 1K Crash Severity Distribution for Urban a	nd Suburban Roadway Segments	·
(1)	(2)	(3)	(4)
	Fatal and injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 1D and 1F;	(5) from Worksheet 1D and 1F; and	(6) from Worksheet 1D and 1F;
collision type	(7) from Worksheet 1H; and	(7) from Worksheet 1H	(7) from Worksheet 1H; and
	(8) from Worksheet 1I and 1J		(8) from Worksheet 1! and 1J
	MULTIPLE-VEHICLE		
Rear-end collisions (from Worksheet 1D)	0.111	0.220	0.332
Head-on collisions (from Worksheet 1D)	0.003	0.001	0.004
Angle collisions (from Worksheet 1D)	0.007	0,020	0,027
Sideswipe, same direction (from Worksheet 1D)	0.008	0.084	0.092
Sideswipe, opposite direction (from Worksheet 1D)	0.001	0.003	0.004
Driveway-related collisions (from Worksheet 1H)	0,058	0,158	0,216
Other multiple-vehicle collision (from Worksheet 1D)	0.002	0.010	0.012
Subtotal	0.190	0.497	0.686
	SINGLE-VEHICLE		
Collision with animal (from Worksheet 1F)	0.001	0.008	0.009
Collision with fixed object (from Worksheet 1F)	0,026	0.123	0.149
Collision with other object (from Worksheet 1F)	0.000	0.010	0.010
Other single-vehicle collision (from Worksheet 1F)	0.037	0.020	0.057
Collision with pedestrian (from Worksheet 11)	0.021	0,000	0,021
Collision with bicycle (from Worksheet 1J)	0.011	0.000	0.011
Subtotal	0.096	0.161	0.257
Total	0.286	0.657	0.943

V	Worksheet 1L – Summary Results for Urban and Suburban Roadway Segments									
(1)	(2)	(3)	(4)							
Crash Severity Level	Predicted average crash frequency, N predicted is (crashes/year)	Roadway segment length, L (mi)	Crash rate (crashes/ml/year)							
	(Total) from Worksheet 1K		(2) / (3)							
Total	0.9	0.24	3.9							
Fatal and injury (FI)	0.3	0.24	1.2							
Property damage only (PDO)	0,7	0.24	2.7							

	General Information	-	Location information
Analyst Agency or Company Date Performed	Curis J. Arnzen ITO District 2 03/10/12	Roadway Intersection Jurisdiction Analysis Year	US-95, Thomoreek to Moscow E2, Old US-95 South Latah Co., ID 2017
	Input Data	Base Conditions	Site Conditions
ntersection type (3ST, 4ST, 4SG)		-	
AADT _{major} (veh/day)	.AADT _{M-X} = 78 300 (veh/day)	-	
AADT _{mitor} (veh/day)	AADT _{thix} = 23,000 (veh/day)	-	
intersection skew angle (degrees)	·	0	
Number of non-STOP-controlled appro-	iches with left-turn lanes (0, 1, 2)	0	
Number of non-STOP-controlled appro-	sches with right-turn lanes (0, 1, 2, 3, or 4)	0	The state of the s
ntersection lighting (present/not presen)	Not Present	Not Plants
Calibration Factor, C.		1.00	*.00

	Worksheet 2B - Crash Modification Factors for Rural Multilane Highway Intersections										
_ (1)	(2)	(3)	(4)	(5)	(6)						
Crash Severity Level	CMF for Intersection Skew Angle (CMF 1)	CMF for Left-Turn Lanes	CMF for Right-Turn Lanes	CMF for Lighting	Combined CMF (CMF COMB)						
	from Equations 11-18 or 11-20 and 11-19 or	(CMF _{2i})	(CMF ₃)	(CMF ₄)							
	11-21	from Table 11-22	from Table 11-23	from Equation 11-22	(2)*(3)*(4)*(5)						
Total	1.00	0.56	0.86	1.00	0.48						
Fatal and Injury (FI)	1.00	0.45	0.77	1.00	0.35						

Note: The 4-leg Signalized Intersection (4SG) models do not have base conditions and so can only be used for estimation purposes. As a result, there are not CMFs provided for the 4SG condition.

	Worksheet 2C - Intersection Crashes for Rural Multilane Highway Intersections											
(1)		(2)		(3)	(4)	(5)	(6)	(7)				
Crash Severity Level	8	SPF Coefficients		N serfint	Overdispersion Parameter, k	Combined CMFs	Calibration	Predicted average crash frequency,				
	from	from Table 11-7 or 11-8		-		from (6) of	Factor, C ₁	N predicted int				
	<u> </u>	b	c or d (4SG)	from Equation 11-11 or 11-12	from Table 11-7 or 11-8	Worksheet 2B		(3)*(5)*(6)				
Total	-12.526	1,204	0,236	0,548	0,460	0.48	1.00	0.264				
Fatal and injury (FI)	-12.664	1.107	0.272	0.257	0.569	0.35	1.00	0.069				
Fatal and Injury ^a (Fi ^a)	-11,989	1.013	0.228	0.170	0.566	0.35	1.00	0.059				
Property Damage Only (PDO)	1		_	_	-		_	(7) _{TOTAL} - (7) _{F1}				
Property Damage Only (1 DC)			L					0.175				

NOTE: * Using the KABCO scale, tilese include only KAB crashes, Crashes with acverity level C (possible injury) are not included.

		Worksheet 2D Cra	shes by Severity	Level and Collision Type for R	tural Multilane Highwa	y Intersections		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(B)	(9)
Collision Type	Proportion of Collision	N problem by (TOTAL) (Crashes/year)	Proportion of Collision	N (crashes/year)	Proportion of Collision Type (FI*)	N predicted int (FI*)	Proportion of Collision Type	N predicted and (PDO) (crashes/year)
	TVDerrorau		Typem			(crashes/ward	(PDO)	
	from Table 11-9	(7) тотаL from Worksheet 2C	from Table 11-9	(7) _{FI} from Worksheet 2C	from Table 11-9	(7) _{Fi} ^a from Worksheet 2C	from Table 11-9	(7)eoo from Worksheet 2C
Total	1.000	0.264	1.000	0.089	1.000	0.059	1.000	0.175
		(2)*(3) _{TOTAL}		(4)x(5) _{F1}		(6)*(7) FI *		(8)*(9) _{PDO}
Head-on collision	0.029	0,008	0.043	0,004	0,052	0,003	0.020	0.003
Sideswipe collision	0.133	0.035	0.058	0.005	0.057	0.003	0.179	0.031
Rear-end collision	0.289	0.076	0.247	0.022	0.142	0.008	0.315	0.055
Angle collision	0.263	0,069	0,369	0,033	0.381	0,022	0.198	0.035
Single-vehicle collision	0.234	0.062	0.219	0.020	0.284	0.017	0.244	0.043
Other collision	0.052	0.014	0.064	0.006	0.084	0.005	0.044	0.008

NOTE: * Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (pousible injury) are not included.

Worksheet 2E Summary Results for Rural Multilane Highway Intersections							
(1) (2)							
Crash severity level	Predicted average crash frequency (crashes / year)						
	(7) from Worksheet 2C						
Total	0.3						
Fetal and Injury (FI)	0.1						
Fatal and injury ^a (Fi ^a)	0.1						
Property Damage Only (PDO)	0.2						

NOTE: * Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

Gen	eral Information	Location Information				
Analyst Agency or Company Date Performed	Curtis J. Arnzen Idaho Transportation Dept. D2 03/10/12	Roadway Intersection Jurisdiction Analysis Year	US-99, Thomcreek to Moscow E2 - Old US-95 North Latah County, ID 2017			
	Input Data	Base Conditions	Site Conditions			
Intersection type (3ST, 3SG, 4ST, 4SG)		- 000	3ŠT			
AADT _{major} (veh/day)	.ADT _{MAX} = 15,700 (veh/day)	17	5,920			
AADT minor (veh/day)	AADT _{M-V} = 9,300 (veh/rlay)	-	1,450			
Intersection lighting (present/not present)		Not Present	Present			
Callbration factor, C _i		1.00	1,00			
Data for unsignalized intersections only:						
Number of major-road approaches	with left-turn lanes (0,1,2)	0				
Number of major-road approaches	with right-turn lanes (0,1,2)	0	The state of the s			
Data for signalized intersections only:		-				
Number of approaches with left-tur	m lanes (0,1,2,3,4) [for 3SG, use maximum value of 3]	0	0			
Number of approaches with right-to	urn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3]	0	0.			
Number of approaches with left-tui	m signal phasing [for 3SG, use maximum value of 3]		0			
Type of left-turn signal phasing for	Leg #1	Permissive	Not Applicates			
Type of left-turn signal phasing for	Leg #2	_	Net Applicative			
Type of left-turn signal phasing for	Leg #3		Not Approachie			
Type of left-turn signal phasing for		- "	Not Applicable			
	um-on-red prohibited [for 3SG, use maximum value of 3]		0			
Intersection red light cameras (pre		Not Present	1909, Parpasest			
	umes (PedVol) Signalized intersections only		-10			
Maximum number of lanes crossed						
Number of bus stops within 300 m		0	0			
	the intersection (present/not present)	Not Present	Nat Present			
ivumber of alcohol sales establish	nents within 300 m (1,000 ft) of the Intersection	0				

	Worksheet 2B Crash Modification Factors for Urban and Suburban Arterial Intersections										
(1)	(2)	(3)	(4)	(5)	(6)	(7)					
CMF for Left-Turn Lanes	CMF for Left-Turn Signal	CMF for Right-Turn Lanes	CMF for Right Turn on Red	CMF for Lighting	CMF for Red Light Cameras	Combined CMF					
	Phasing				_						
CMF 1i	CMF 2i	CMF 3i	CMF 4i	CMF 5I	CMF 6i	CMF COMB					
from Table 12-24	from Table 12-25	from Table 12-26	from Equation 12-35	from Equation 12-36	from Equation 12-37	(1)*(2)*(3)*(4)*(5)*(6)					
0.67	1.00	0.86	1.00	0.91	1.00	0.52					

		Worksheet	2C Multiple-	Vehicle Collisions by Seve	rity Level for Urban	and Suburban Arterial I	ntersections			
(1)	(1) (2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Crash Severity Level	SPF Coefficients		Overdispersion		Proportion of Total	Adjusted	Combined	Calibration	Predicted	
				Parameter, k	Initial N _{blim}	Crashes	N _{blrw}	CMFs	Factor, C	N _{bbmv}
	f	rom Table 12-1	0	from Table 12-10	from Table 12-10 from Equation 12-		(4) _{TOTAL} *(5)	(7) from		(6)*(7)*(8)
	a	b	C	HOMPTEDIC IZ-10	21		(*)IDIAL (*)	Worksheet 2B		(0) (1) (0)
Total	-13.36	1.11	0.41	0.60	0.480	1.000	0.480	0.52	1.00	0.252
Fatal and Injury (Fi)	-14.01	1.16	0.30	0.69	0.174	$(4)_{FI}/((4)_{FI}+(4)_{PDO})$	0.181	0.52	1.00	0.095
r deli end injery (r i)	-14.01	1.10	0.00	. 5.55			0.101	0.52	1.00	0,033
Property Damage Only	-15.38	1.20	0.51	0.77	0.288	(5) _{TOTAL} -(5) _{FI}	0.299	0.52	1.00	0.157
(PDO)	-10.00	1.20	0.51	0.77	0.200	0.624	0,299	0.52	1.00	0.157

Worksheet 2D Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections									
(1)	(2)	(3)	(4)	(5)	(6)				
Collision Type	Proportion of Collision Predicted N Above (crashes/year)		Proportion of Collision Type (PDO)	Predicted N how (1700) (crashes/year)	Predicted N history (TOTAL) (crashes/year				
	from Table 12-11	(9)n from Worksheet 2C	from Table 12-11	(9)po from Worksheet 2C	(9)PDO from Worksheet 2C				
Total	1.000	0,095	1.000	0.157	0.252				
		(2)*(3) _{Fl}		(4)*(5) _{PDO}	(3)+(5)				
Rear-end collision	0.421	0.040	0.440	0.069	0,109				
Head-on collision	0,045	0.004	0.023	0.004	0.008				
Angle collision	0.343	0.032	0.262	0.041	0.074				
Sideswipe	0.126	0.012	0.040	0,006	0.018				
Other multiple-vehicle collision	0.065	0.006	0.235	0,037	0.043				

-		Worksheet	2E – Single-	ehicle Collisions by Sever	ity Level for Urban	and Suburban Arterial In	tersections			
(1)	l.	(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)
		SPF Coefficients		Overdispersion Parameter, k	initial N _{bisy}	Proportion of Total Crashes	Adjusted N _{birm}	Combined CMFs	Calibration Factor, C	Predicted N _{bisy}
Crash Severity Level	a	rom Table 12-1 b	12 C	from Table 12-12	from Eqn. 12-24; (FI) from Eqn. 12-		(4) _{TOTAL} *(5)	(7) from Worksheet 2B		(6)*(7)*(8)
Total	-6,81	0.16	0.51	1.14	24 or 12-27 0.181	1,000	0.181	0.52	1.00	0.095
Fatal and Injury (FI)	-	_	_		0.056	(4) _F /((4) _{FI} +(4) _{PDO}) 0,333	0.06C	0.52	1.00	0.032
Property Damage Only (PDO)	-8.36	0.25	0.55	1,29	0.112	(5) _{TOTAL} -(5) _{FI} 0.667	0.121	0.52	1.00	0.063

	Worksheet 2F – Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections									
(1)	(2)	(3)	(4)	(5)	(6)					

Collision Type	Proportion of Collision Typeका	Predicted N Nov (FI) (crashes/year)	Proportion of Collision Type	Predicted N May (PD0) (crashes/year)	Predicted N _{blav (TOTAL)} (crashes/year)		
	from Table 12-13	(9)n from Worksheet 2E	from Table 12-13	(9) _{PDO} from Worksheet 2E	(9) _{Poo} from Worksheet 2E		
Total	1.000	0.032	1.000	0.063	0.095		
		(2)*(3) _{Fl}		(4)*(5) _{PDO}	(3)+(5)		
Collision with parked vehicle	0,001	0.000	0.003	0.000	0.000		
Collision with animal	0.003	0.000	0.018	0.001	0.001		
Collision with fixed object	0.762	0.024	0.834	0.053	0,077		
Collision with other object	0,090	0.003	0.092	0.006	0.009		
Other single-vehicle collision	0.039	0.001	0.023	0.001	0.003		
Single-vehicle noncollision	0.105	0.003	0.030	0.002	0.005		

Worksheet 2G Vehicle-Padastrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections										
(1)	(1) (2) (3) (4) (5) (6)									
Crash Severity Level	Predicted N _{blav} Predicted N _{blav}		Predicted N _{bl}	f _{pect}	Calibration factor, C.	Predicted N _{pedi}				
	(9) from Worksheet 2C	(9) from Worksheet 2E	(2) + (3)	from Table 12-16	Campianon factor, Ci	(4)*(5)*(6)				
Total	0.252	0.095	0,347	0.021	1.00	0.007				
Fatal and injury (FI)		_	_		1.00	0.007				

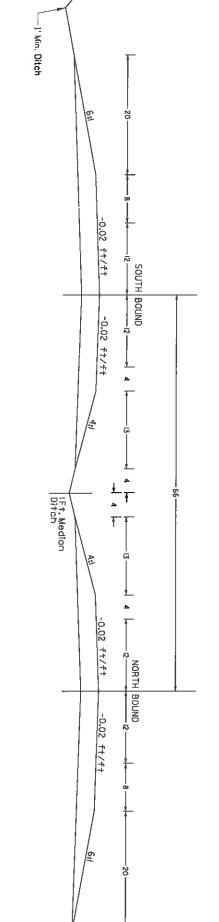
Worksheet 2H Crash Modification Factors for Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Signalized Intersections									
(1)	(2)	(3)	(4)						
CMF for Bus Stops	CMF for Schools	CMF for Alcohol Sales Establishments	0 1: 1015						
CMF _{1p}	CMF _{2p}	CMF _{3p}	Combined CMF						
from Table 12-28	from Table 12-29	from Table 12-30	(1)*(2)*(3)						
	1	<u></u>							

		Worksher	et 21 – Vehick	e-Pedestrian C	ollisions for	Jrban and Suburba	ın Arterial Signalized inte	rsections		
(1)		(2)					(4)	(5)	(6)	(7)
Crash Severity Level		SPF Coefficients Overdispersion Nondam					N _{pedbase}	Combined CMF	Calibration	Predicted N _{ped}
Crash Seventy Level	a	from Table 12-14					from Equation 12-29	(4) from Worksheet 2H	factor, C ₁	(4)*(5)*(8)
Total		-			-	_	 -	_	1,00	
Fatal and Injury (FI)		-	-						1.00	

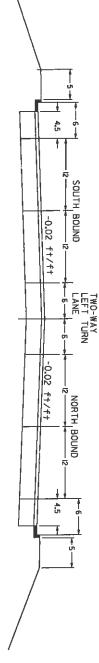
Worksheet 2.J — Vehicle-Bicycle Collisions for Urban and Suburban Arterial intersections										
(1)	(2)	(3)	(4)	(5)	(6)	(7)				
Crash Severity Level	Predicted N _{birre}	Predicted N _{blav}	Predicted N _{bi}	f _{bikel}	Calibration factor, C.	Predicted N _{blini}				
	(9) from Worksheet 2C	(9) from Worksheet 2E	(2) + (3)	from Table 12-17	Campiation lactor, Ci	(4)*(5)*(6)				
Total	0.252	0,095	0.347	0,016	1.00	0.006				
Fatal and injury (FI)	-	-	-	-	1.00	0.006				

	eet 2K — Crash Severity Distribution for Urban a	no Supurpan Arterial Intersections	
(1)	(2)	(3)	(4)
	Fatal and Injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 2D and 2F;	(5) from Worksheet 2D and 2F	(6) from Worksheet 2D and 2F;
	(7) from 2G or 2I and 2J		(7) from 2G or 2i and 2J
	MULTIPLE-VEHICLE	· ·	
Rear-end collisions (from Worksheet 2D)	0.040	0.069	0.109
Head-on collisions (from Worksheet 2D)	0.004	0.004	0,008
Angle collisions (from Worksheet 2D)	0,032	0.041	0.074
Sideswipe (from Worksheet 2D)	0.012	0.006	0.018
Other multiple-vehicle collision (from Worksheet 2D)	0.006	0.037	0.043
Subtotal	0.095	0.157	0.252
·	SINGLE-VEHICLE		
Collision with parked vehicle (from Worksheet 2F)	0.000	0.000	0.000
Collision with animal (from Worksheet 2F)	0.000	0.001	0.001
Collision with fixed object (from Worksheet 2F)	0.024	0.053	0.077
Collision with other object (from Worksheet 2F)	0,003	0.006	0.009
Other single-vehicle collision (from Worksheet 2F)	0.001	0.001	0.003
Single-vehicle noncollision (from Worksheet 2F)	0.003	0.002	0.005
Collision with pedestrian (from Worksheet 2G or 2l)	0.007	0.000	0.007
Collision with bicycle (from Worksheet 2J)	0.006	0.000	0,006
Subtotal	0.044	0.063	0,108
Total	0.139	0.220	0.359

Worksheet 2L Summary Results for Urban and Suburban Arterial Intersections						
(1)	(2)					
(1) ash severity level tal al and injury (FI)	Predicted average crash frequency, N _{predicted int} (crashes/year)					
	(Total) from Worksheet 2K					
Total	0.4					
Fatal and injury (FI)	0.1					
Property damage only (PDO)	0.2					


Appendix C.2 Typical Sections, AASHTO HSM Calculations, and Results For Alignment C3

C-3 TYPICAL SECTIONS


RURAL SECTION

Milepost 337.668 to Milepost 342.187

URBAN SECTION

Milepost 342,187 to Milepost 343,608

Worksheet 1	A General Information and Input Da	ta for Rural Multilane Roadwa	ay Segments		
General Information		Location Information			
Analyst Agency or Company	Curtis J. Amzen (TD D2	Roadway Roadway Section	US-95, Thomcreek to Moscow C3 Rural - Divided		
Date Performed	03/30/12	Jurisdiction Analysis Year	Latah Co, ID 2017		
Input Data		Base Conditions	Site Conditions		
Roadway type (divided / undivided)	•	Undivided	Divided		
ength of segment, L (mi)		-	4,52		
AADT (veh/day)	AADT _{MAX} = 89,300 (veh/day)	-	5,920		
ane width (ft)		12			
Shoulder width (ft) - right shoulder width for divided (if differ for	directions of travel, use average width]	8			
houlder type - right shoulder type for divided		Paved	Payed		
ledian width (ft) - for divided only		30	40		
ide Slopes - for undivided only		1:7 or flatter	Not Applicable		
ighting (present/not present)		Not Present	Not Pissent		
uto speed enforcement (present/not present)		Not Present	Nick Present		
Calibration Factor, Cr		1.00	1.00		

	Worksheet 1B (a) — Crash Modification Factors for Rural Multilane Divided Roadway Segments											
(1)	(2)	(3)	(4)	(5)	(6)							
CMF for Lane Width	CMF for Right Shoulder Width	CMF for Median Width	CMF for Lighting	CMF for Automated Speed	Combined CMF							
	-			Enforcement								
CMF 1rd	CMF 2rd	CMF 3rd	CMF 4rd	CMF 5rd	CMF comb							
from Equation 11-16	from Table 11-17	from Table 11-18	from Equation 11-17	from Section 11.7.2	(1)*(2)*(3)*(4)*(5)							
1.00	1.00	0.99	1.00	1.00	0.99							

	Worksheet 1C (a) Roadway Segment Crashes for Rural Multilane Divided Roadway Segments													
(1)		(2)		(3)	(4)	(5)	(6)	(7)						
Crash Severity Level	SPF Coefficients		SPF Coefficients		N spf rd	Overdispersion	Combined CMFs	Calibration	Predicted average crash					
•	from Table 11-5		· ·	Parameter, k	(6) from Worksheet Factor, (frequency, N moderate color							
	a	Ь	c	from Equation 11-9	from Equation 11-10	1B (a)		(3)*(5)*(6)						
Total	-9.025	1.049	1.549	4.929	0.047	0.99	1.00	4.880						
Fatal and Injury (FI)	-8.837	0.958	1.687	2.699	0.041	0,99	1,00	2.672						
Fatal and Injury ^a (FI ^a)	-8.505	0,874	1.740	1.813	0.039	0.99	1.00	1.795						
Property Damage Only (PDO)	-		-	-	_		-	(7) _{TOTAL} - (7) _{FI} 2.208						

NOTE: "Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

		et 1D (a) Crashes by Sevi		Comsion Type for Ru		Divined Kosaway Segn		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion	N predicted ra(d) (TOTAL)	Proportion of	N predicted re(d) (FI)	Proportion	N predicted rs (FI*)	Proportion	N predicted ra(d) (PDO)
	of Collision	(crashes/year)	Collision	(crashes/year)	of Collision	(crashes/year)	of Collision	(crashes/year)
	TVD8(TOTAL)		Type(FI)		Type (FI ²)		Type (PDO)	, ,
	from Table	(7) TOTAL from Worksheet 1C	from Table 11-	(7) _{FI} from Worksheet	from Table	(7) Fi from Worksheet	from Table	(7)PDO from Worksheet 1C
	11-6	(a)	6	1C (a)	11-6	1C (a)	11-6	(a)
Total	1.000	4.880	1,000	2,672	1.000	1.795	1.000	2.208
		(2)*(3) _{TOTAL}		(4)x(5) _{FI}		(6)*(7) FI *		(8)*(9) _{PDO}
Head-on collision	0.006	0.029	0.013	0.035	0.018	0.032	0.002	0.004
Sideswipe collision	0.043	0.210	0.027	0.072	0.022	0.039	0.053	0.117
Rear-end collision	0.116	0,566	0.163	0.435	0.114	0.205	0.088	0.194
Angle collision	0.043	0.210	0.048	0.128	0.045	0.081	0.041	0.091
Single-vehicle collision	0.768	3,748	0.727	1.942	0.778	1.397	0.792	1.749
Other collision	0.024	0.117	0.022	0,059	0,023	0.041	0.024	0.053

NOTE: * Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

Worksheet 1E Summary Results for Rural Multilane Roadway Segments										
(1)	(2)	(3)	(4)							
Crash severity level	Predicted average crash frequency (crashes/year)	Roadway segment length (ml)	Crash rate (crashes/ml/year)							
• · · · · · · · · · · · · · · · · · · ·	(7) from Worksheet 1C (a) or (b)		(2)/(3)							
Fotal .	4.9	4.5	1.1							
atal and Injury (FI)	2.7	4.5	0,6							
fatal and injury" (Fi ^a)	1.8	4.5	0.4							
Property Damage Only (PDO)	2.2	4,5	0.5							

NOTE: * Using the KABCO scale, these include only KAB crashes. Crashes with severily level C (possible injury) are not included.

	1A General Information and input D	ata itri biban anti Suburban Ku	
General Informatio			Location Information
Analyst	Curtis J. Arnzen	Roadway	US-95, Thorncreek to Moscow
Agency or Company	Idaho Transportation Dept. D2	Roadway Section	C3, Suburban
Date Performed	03/21/12	Jurisdiction	Latah County, Idaho
		Analysis Year	2017
Input Data	•	Base Conditions	Site Conditions
Roadway type (2U, 3T, 4U, 4D, ST)			510
Length of segment, L (ml)		- [1.47
AADT (veh/day)	AADT _{Max} = 53,800 (veh/day)		7,465
Type of on-street parking (none/parallel/angle)		None	ivi ma
Proportion of curb length with on-street parking			0
Median width (ft) - for divided only		15	Aust Property
Lighting (present / not present)	·	Not Present	Present
Auto speed enforcement (present / not present)		Not Present	Not Printed
Major commercial driveways (number)		-	3
Minor commercial driveways (number)	·		12
Major industrial / institutional driveways (number)			0
Minor industrial / institutional driveways (number)			0
Major residential driveways (number)			0
Minor residential driveways (number)			7
Other driveways (number)			0
Speed Category			Posted Speed Greater than 30 mpg
Roadside fixed object density (fixed objects / mi)		0	0
Offset to roadside fixed objects (ft) [If greater than 30 or Not I	resent, input 30]	30	30
Calibration Factor, Cr		1.00	1,00

	Worksheet 1B — Crash Modification Factors for Urban and Suburban Roadway Segments											
(1)	(2)	(3)	(4)	(5)	(6)							
CMF for On-Street Parking	CMF for Roadside Fixed Objects	CMF for Median Width	CMF for Lighting	CMF for Automated Speed Enforcement	Combined CMF							
CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMF 5r	CMF comb							
from Equation 12-32	from Equation 12-33	from Table 12-22	from Equation 12-34	from Section 12.7.1	(1)*(2)*(3)*(4)*(5)							
1.00	1.00	1.00	0,94	1.00	0.94							

	Worksheet 1C - Multiple-Vehicle Nondriveway Collisions by Severity Level for Urban and Suburban Roadway Segments										
(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)		
Crash Severity Level	SPF Coefficients		Overdispersion Parameter, k	Initial N _{brow}	Proportion of Total Crashes	Adjusted N _{brmv}	Combined CMFs	Calibration Factor, Cr	Predicted N _{brmv}		
	from Ta	ble 12-3	from Table 12-3	from Equation 12-10	1	(4) _{TOTAL} *(5)	(6) from Worksheet 1B	. 20101, 01	(6)*(7)*(8)		
Total	-9.70	1.17	0.81	2.959	1.000	2.959	0.94	1,00	2.782		
Fatal and Injury (FI)	-10.47	1.12	0.62	0.877	(4) _{FI} /((4) _{FI} +(4) _{PDO}) 0.280	0.828	0.94	1.00	0,778		
Property Damage Only (PDO)	-9.97	1.17	0.88	2.258	(5) _{TOTAL} -(5) _{FI} 0.720	2.131	0.94	1.00	2.004		

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type _(P)	Predicted N home (F) (crashes/year)	Proportion of Collision Type (PDD)	Predicted N braw (roo) (crashes/year)	Predicted N _{brmv (TOTAL)} (crashes/year)
	from Table 12-4	(9)n from Worksheet 1C	from Table 12-4	(9)roo from Worksheet 1C	(9)TOTAL from Worksheet 1C
Total	1.000	0.778	1.000	2.004	2.782
		(2)*(3) _{Fl}		(4)*(5) _{PDO}	(3)+(5)
Rear-end collision	0.846	0.658	0.651	1.305	1,963
fead-on collision	0.021	0.016	0.004	0.008	0.024
Ingle collision	0,050	0.039	0.059	0.118	0.157
ideswipe, same direction	0.061	0.047	0.248	0.497	0,544
lideswipe, opposite direction	0.004	0,003	0.009	0.018	0.021
Other multiple-vehicle collision	0.018	0.014	0.029	0.058	0.072

	Worksheet 1E Single-Vehicle Collisions by Severity Level for Urban and Suburban Roadway Segments													
(1)	l (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)					
Crash Severity Level	SPF Cor	efficients	Overdispersion Parameter, k	Initial N _{brsv}	Proportion of Total Crashes	Adjusted N _{brav}	Combined CMFs	Calibration Factor, Cr	Predicted N _{brav}					
Orabii Severity Level	from Ta	ble 12-5 b	from Table 12-5	from Equation 12-13		(4) _{TOTAL} *(5)	(6) from Worksheet 1B		(6)*(7) *(8)					
Total	-4.82	0.54	0.52	1.414	1.000	1.414	0.94	1.00	1.330					
Fatal and Injury (FI)	-4.43	0.35	0.36	0.384	(4) _{Fl} /((4) _{Fl} +(4) _{PDO}) 0.285	0,403	0.94	1.00	0.379					
Property Damage Only (PDO)	-5,83	0,61	0.55	0.961	(5) _{TOTAL} -(5) _{FI} 0.715	1.011	0.94	1.00	0.950					

w	Worksheet 1F — Single-Vehicle Collisions by Collision Type for Urban and Suburban Roadway Segments									
(1)	(2)	(3)	(4)	(5)	(6)					
Collision Type	Proportion of Collision Type _(Fi)	Predicted N Mary (FI) (crashes/year)	Proportion of Collision Type _(PDO)	Predicted N Arm (PDO) (crashes/year)	Pradicted N bray (TOTAL) (crashes/year)					
	from Table 12-6	(9)n from Worksheet 1E	from Table 12-6	(9)PDO from Worksheet 1E	(9) TOTAL from Worksheet 1E					
Total	1.000	0.379	1.000	0.950	1.330					

		(2)*(3) _{Fi}		(4)*(5) _{PDO}	(3)+(5)
Collision with animal	0.016	0.006	0.049	0.047	0.053
Collision with fixed object	0.398	0.151	0.768	0.730	0.881
Collision with other object	0.005	0.002	0.061	0.058	0.060
Other single-vehicle collision	0.581	0.220	0.122	0.116	0.336

Worksheet	IG Multiple-Vehicle Drive	way-Related Collisions b	y Driveway Type for Urban	and Suburban Roadway Segments		
(1)	(2)	(3)	(4)	(5)	(6)	
	Number of driveways,	Crashes per driveway per year, N	Coefficient for traffic adjustment, t	Initial N _{brokey}	Overdispersion parameter, k	
Driveway Type	n _i	from Table 40.7	from Table 40.7	Equation 12-16	for an Walter 40 7	
	, mon 18	from Table 12-7	from Table 12-7	n _i * N _i * (AADT/15,000) ^t	from Table 12-7	
Major commercial	3	0.165	1.172	0.218	-	
Minor commercial	12	0.053	1.172	0.261		
Major industrial/institutional	0	0.181	1.172	0.000		
Minor Industrial/institutional	0	0.024	1.172	0.000	-	
Major residential	0	0.087	1.172	0,000		
Minor residential	7	0.016	1.172	0.049		
Other	0	0.027	1.172	0.000		
Total		_	_	0.549	0.10	

Worksheet 1H – Multiple-Vehicle Driveway-Related Collisions by Severity Level for Urban and Suburban Roadway Segments											
(1) (2) (3) (4) (5) (6)											
A	initial N _{brdwy}	Proportion of total crashes (f _{dwv})	Adjusted N _{brdwy}	Combined CMFs	Calibration factor, C.	Predicted N _{brdwy}					
Crash Severity Level	(5) _{TOTAL} from Worksheet 1G	from Table 12-7	(2) _{TOTAL} * (3)	(6) from Worksheet 1B		(4)*(5)*(6)					
Total	0.549	1.000	0.549	0.94	1.00	0.516					
Fatal and injury (FI)		0,269	0.148	0.94	1.00	0,139					
Property damage only (PDO)		0,731	0,401	0.94	1,00	0,377					

	Worksheet 1I Vehicle-Pedestrian Collisions for Urban and Suburban Roadway Segments									
(1)	(1) (2) (3) (4) (5) (6) (7) (8)									
	Predicted N _{brmv}	Predicted Notes	Predicted Notice	Predicted N _{br}	f _{pedr}	Calibration	Predicted N _{pedr}			
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3)+(4)	from Table 12-8	factor, C,	(5)*(6)*(7)			
Total	2.782	1.330	0.516	4.628	0,023	1.00	0.106			
Fatal and injury (FI)		ı	_	-	_	1.00	0.106			

	Worksheet 1J Vehicle-Bicycle Collisions for Urban and Suburban Roadway Segments									
(1)	(2)	(3)_	(4)	(5)	(6)	(7)	. (8)			
	Predicted N _{brow}	Predicted N _{brav}	Predicted N _{brdwy}	Predicted N _{br}	f _{biker}	Calibration	Predicted N _{böver}			
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3)+(4)	from Table 12-9	factor, C,	(5)*(6)*(7)			
Total	2.782	1.330	0.516	4.628	0.012	1.00	0.056			
Fatal and injury (FI)	_	ı	t	-		1.00	0.056			

Workshee	at 1K Crash Severity Distribution for Urban a	nd Suburban Roadway Segments	
(1)	(2)	(3)	(4)
	Fatal and injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 1D and 1F;	(5) from Worksheet 1D and 1F; and	(6) from Worksheet 1D and 1F;
collision rabs	(7) from Worksheet 1H; and	(7) from Worksheet 1H	(7) from Worksheet 1H; and
	(8) from Worksheet 1I and 1J		(8) from Worksheet 1I and 1J
	MULTIPLE-VEHICLE		
Rear-end collisions (from Worksheet 1D)	0.658	1.305	1.963
lead-on collisions (from Worksheet 1D)	0.016	0.008	0.024
Angle collisions (from Worksheet 1D)	0.039	0.118	0.157
Sideswipe, same direction (from Worksheet 1D)	0.047	0.497	0.544
Sideswipe, opposite direction (from Worksheet 1D)	0,003	0.018	0.021
Driveway-related collisions (from Worksheet 1H)	0.139	0.377	0.516
Other multiple-vehicle collision (from Worksheet 1D)	0.014	0.058	0.072
Subtotal	0.917	2.381	3.298
	SINGLE-VEHICLE		
Collision with animal (from Worksheet 1F)	0.006	0.047	0.053
Collision with fixed object (from Worksheet 1F)	0.151	0.730	0.861
Collision with other object (from Worksheet 1F)	0.002	0.058	0.060
Other single-vehicle collision (from Worksheet 1F)	0,220	0.116	0.336
Callision with pedestrian (from Worksheet 1I)	0.106	0.000	0.106
Collision with bicycle (from Worksheet 1J)	0.056	0.000	0.056
Subtotal	0.541	0.950	1.492
otal	1.458	3,332	4.790

Worksheet 1L Summary Results for Urban and Suburban Roadway Segments								
(1)	(4)							
Crash Severity Level	Predicted average crash frequency, N _{predicted ra} (crashes/year)	Roadway segment length, L (ml)	Crash rate (crashes/ml/year)					
	(Total) from Worksheet 1K		(2) / (3)					
l otal	4.8	1.42	3.4					
atal and injury (FI)	1.5	1.42	1.0					
roperty damage only (PDO)	3.3	1.42	2.3					

	Worksheet 2A – General info	rmation and input Data for Rural Mu	fillane Highway Intersections
General	Information		Location information
inalyst Curtis J. Amzen Igency or Company ITD District 2 late Performed 03/10/12		Roadway Intersection Jurisdiction Analysis Year	US-95, Thomcreek to Moscow C3 - Old US-95 South Latah Co, ID 2017
Inpo	# Data	Base Conditions	Site Conditions
ntersection type (3ST, 4ST, 4SG)			
AADT _{major} (veh/day)	.ADT _{M x} = 78,300 (veir/day)	-	9 R/C
AADT _{minor} (veh/day)	VADT _{tox} = 27,000 (veh/day)	_	500
ntersection skew angle (degrees)		0	Ü.
Number of non-STOP-controlled approaches with I	eff-turn tanes (0, 1, 2)	0	
Number of non-STOP-controlled approaches with r	cont-turn lanes (0, 1, 2, 3, or 4)	0	
ntersection lighting (present/not present)		Not Present	Not Please to
Calibration Factor, C		1.00	1.00

	Workshieet 2B - Crush Modification Factors for Rural Multilane Highway Intersections										
(1) (2) (3) (4) (5) (6)											
Crash Severity Level	CMF for Intersection Skew Angle (CMF 1/)	CMF for Left-Turn Lanes	CMF for Right-Turn Lanes	CMF for Lighting	Combined CMF (CMF COMB)						
	from Equations 11-18 or 11-20 and 11-19 or	(CMF _{2i})	(CMF ₃)	(CMF ₄)							
	11-21	from Table 11-22	from Table 11-23	from Equation 11-22	(2)*(3)*(4)*(5)						
Total	1.00	0.56	0.86	1.00	0.48						
Fatal and Injury (FI)	1.00	0.45	0.77	1.00	0.35						

Note: The 4-leg Signalized Intersection (4SG) models do not have base conditions and so can only be used for estimation purposes. As a result, there are not CMFs provided for the 4SG condition.

	Worksheet 2C — Intersection Crashes for Rural Multilane Highway Intersections											
(1)		(2)		(2)		(3)	(4)	(5)	(6)	(7)		
Crash Severity Level	8	SPF Coefficients		SPF Coefficients		SPF Coefficients		N seriet	Overdispersion Parameter, k	Combined CMFs	Calibration	Predicted average crash frequency,
	from	from Table 11-7 or 11-8				from (6) of	Factor, C	N predicted int				
	a	Ь	c or d (45G)	from Equation 11-11 or 11-12	from Table 11-7 or 11-8	Worksheet 2B		(3)*(5)*(6)				
Total	-12.526	1.204	0,236	0.548	0.460	0.48	1.00	0.264				
Fatal and Injury (FI)	-12.664	1.107	0.272	0.257	0.569	0.35	1.00	0.089				
Fatal and Injury (Fi ^a)	-11,989	1.013	0.228	0.170	0.566	0.35	1.00	0.059				
Property Damage Only (PDO)	-	-		-	_	-	-	(7) _{TOTAL} - (7) _{FI} 0.175				

NOTE: " Using the KABCO scale, those include only KAB crawhes, Crawhes with severity level C (possible injury) are not included.

		Worksheet 2D — Cra	thes by Severity	Level and Collision Type for R	lural Multilano (lighwa	y Intersections		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of	N predicted int (TOTAL)	Proportion of	N produce or (crashes/year)	Proportion of	N predicted int	Proportion of	N produced let (PDD) (crashes/year)
	Collision	(crashes/year)	Collision		Collision Type (FI*)	(FIT)	Collision Type	,
	TVDenorali		Typens			(crashes/year)	(PDO)	
	from Table 11-9	(7) тоты from Worksheet 2C	from Table 11-9	(7)n from Worksheet 2C	from Table 11-9	(7) _{Fi} ^a from Worksheet 2C	from Table 11-9	(7)Poo from Worksheet 2C
Total	1.000	0.264	1.000	0.089	1.000	0.059	1.000	0.175
		(2)*(3) _{TOTAL}		(4)x(5) _F		(6)*(7) _{FI} *		(8)*(9) _{PDO}
Head-on collision	0.029	0,008	0.043	0.004	0.052	0.003	0.020	0.003
Sideswipe collision	0.133	0.035	0.058	0.005	0.057	0.003	0.179	0.031
Rear-end collision	0,289	0.076	0.247	0.022	0.142	0.008	0.315	0.055
Angle collision	0.263	0,069	0.369	0.033	0,381	0.022	0.198	0,035
Single-vehicle collision	0.234	0.062	0.219	0.020	0.284	0.017	0.244	0.043
Other collision	0.052	0.014	0.064	0.006	0.084	0.005	0.044	900.0

NOTE: * Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

Worksheet 2E — Summary Results for Rural Multillane Highway Intersections						
(1) (2)						
Crash severity level	Predicted average crash frequency (crashes / year)					
· ·	(7) from Worksheet 2C					
Total	0.3					
Fatal and Injury (FI)	0.1					
Fatal and Injury ^a (Fi ^a)	0.1					
Property Damage Only (PDO)	0.2					

NOTE: * Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

		rmation and input Data for Rural Mu			
	General Information		Location Information		
Analyst	Curtis J. Amzen	Roadway	US-95, Thorncreek to Moscow		
Agency of Company	ITD District 2	Intersection	C3 - Eid Intersection		
Date Performed	03/10/12	Jurisdiction	Latah Co., ID		
		Analysis Year	2017		
	Input Data		Site Conditions		
Intersection type (3ST, 4ST, 4SG)					
AADT _{mape} (veh/day)	AADT _{M A} = 78,300 (*elvday)	-	5,920		
AADT _{minor} (veh/day)	AADT _{Max} = 23 000 (veh/day)	-	65		
Intersection skew angle (degrees)		0	0		
Number of non-STOP-controlled approx	ches with left-turn lanes (0, 1, 2)	0			
Number of non-STOP-controlled approx	ches with right-turn lanes (0, 1, 2, 3, or 4)	0			
Intersection lighting (present/not present		Not Present	Aid Phonet		
Calibration Factor, C.		1.00	1,60		

Worksheet 2B — Crash Modification Factors for Rural Multilane Highway Intersections										
(1)	(2)	(3)	(4)	. (5)	(6)					
Crash Severity Level	CMF for Intersection Skew Angle (CMF 11)	CMF for Left-Turn Lanes	CMF for Right-Turn Lanes	CMF for Lighting	Combined CMF (CMF COMB)					
	from Equations 11-18 or 11-20 and 11-19 or	(CMF _{2i})	(CMF _{3I})	(CMF ₄)						
	11-21	from Table 11-22	from Table 11-23	from Equation 11-22	(2)*(3)*(4)*(5)					
Total	1.00	1.00	1.00	1.00	1.00					
Fatal and Injury (FI)	1.00	1.00	1.00	1.00	1.00					

Note: The 4-leg Signalized Intersection (4SG) models do not have base conditions and so can only be used for estimation purposes. As a result, there are not CMFs provided for the 4SG condition.

-	Worksheet 2C — Intersection Crashes for Rural Multilains Highway Intersections											
(1)		(2)		(3)	(4)	(5)	(6)	(7)				
Crash Severity Level	S	SPF Coefficients		SPF Coefficients		N sofint	Overdispersion Parameter, k	Combined CMFs	Calibration	Predicted average crash frequency,		
	from	Table 11-7 or	11-8	·		from (6) of	Factor, C ₁	N predicted int				
	8	Ь	c or d (4SG)	from Equation 11-11 or 11-12	from Table 11-7 or 11-8	Worksheet 2B		(3)*(5)*(6)				
Total	-12.526	1.204	0.236	0.339	0.460	1.00	1,00	0.339				
Fatal and Injury (FI)	-12.664	1.107	0.272	0.148	0.569	1.00	1.00	0.148				
Fatal and Injury® (FI®)	-11.989	1.013	0.228	0.107	0.566	1.00	1.00	0,107				
Property Damage Only (PDO)	-	-	-	_	_	_	-	(7) _{TOTAL} - (7) _{FI}				

NOTE: "Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

	Worksheet 2D Crashes by Severify Level and Collision Type for Rural Multilane Highway Intersections												
(1)	(2)	(3)	(4)	(5)	. (6)	(7)	(8)	(9)					
Collision Type	Proportion of Collision Typerman	N protein in (10174.) (crashes/year)	Proportion of Collision Typern	N predicted for (PI) (Crashes/year)	Proportion of Collision Type (FI ^a)	N predicted int (FI*) (crashes/year)	Proportion of Collision Type (PDO)	N predicted let (PDO) (crashes/year)					
	from Table 11-9	(7) тоты, from Worksheet 2C	from Table 11-9	(7)= from Worksheet 2C	from Table 11-9	(7) Fi ⁸ from Worksheet 2C	from Table 11-9	(7)eco from Worksheet 2C					
Total	1,000	0.339	1.000	0.148	1,000	0.107	1.000	0.191					
		(2)*(3) _{TOTAL}		(4)x(5) _{F1}		(6)*(7) _□ *		(8)*(9) _{PDQ}					
lead-on collision	0.029	0.010	0,043	0.006	0.052	0.006	0.020	0.004					
Sideswipe collision	0.133	0.045	0.058	0.009	0,057	0.006	0.179	0.034					
Rear-end collision	0.289	0.098	0.247	0,036	0.142	0.015	0.315	0.060					
Angle collision	0.263	0,089	0.369	0.054	0.381	0.041	0,198	0.038					
Single-vehicle collision	0.234	0.079	0.219	0.032	0,284	0.030	0.244	0.047					
Other collision	0.052	0.018	0.064	0.009	0.084	0.009	0.044	0.008					

NOTE: * Using the KABCO scale, these Include only KAB crashes. Crashes with severily level C (possible injury) are not included.

Worksheet 2E Summary Res	Worksheet 2E Summery Results for Rural Multilane Highway Intersections						
(1)							
Crash severity level	Predicted average crash frequency (crashes / year)						
	(7) from Worksheet 2C						
Total	0.3						
Fatal and Injury (FI)	0.1						
Fatal and injury ^a (Fi ^a)	0,1						
Property Damage Only (PDO)	0.2						

NOTE: " Listing the KABCO scale, those include only KAB crashes. Crashes with severity level C (possible injury) are not included.

General le	nformation	L	ocation information
Analyst Agency or Company Date Performed	Curtis J. Amzen Idaho Transportation Dept. D2 03/10/12	Roadway Intersection Jurisdiction Analysis Year	US-95, Thomcreek to Moscow C3 - Old US-95 North Lateh County, ID 2017
Inpu	Data	Base Conditions	Site Conditions
ntersection type (3ST, 3SG, 4ST, 4SG)			
AADT major (veh/day)	AADT _{PAX} = 45,700 (ven/day)	-	4/20
AADT minor (veh/day)	AADT _{I wy} = 9 300 (veh/day)	_	500
Intersection lighting (present/not present)		Not Present	Or of
Calibration factor, Ci	. -	1.00	1.00
Data for unsignalized intersections only:			
Number of major-road approaches with I	eft-turn lanes (0,1,2)	0	
Number of major-road approaches with r	ight-turn lanes (0,1,2)	0	
Data for signalized intersections only:			
Number of approaches with left-turn lane	s (0,1,2,3,4) [for 3SG, use maximum value of 3]	0	6
Number of approaches with right-turn lar	nes (0,1,2,3,4) [for 3SG, use maximum value of 3]	0	0
Number of approaches with left-turn sign	al phasing [for 3SG, use maximum value of 3]	_	Ů.
Type of left-turn signal phasing for Leg #	1	Permissive	Not Applicable
Type of left-turn signal phasing for Leg #	2	-	Not Applicable
Type of left-turn signal phasing for Leg #	3		His approache
Type of left-turn signal phasing for Leg #		- II	Not Applicable
	red prohibited [for 3SG, use maximum value of 3]		
Intersection red light cameras (present/n		Not Present	Not Printers
Sum of all pedestrian crossing volumes			10
Maximum number of lanes crossed by a		-	0
Number of bus stops within 300 m (1,000		0	0.
Schools within 300 m (1,000 ft) of the interest		Not Present	Not Present
Number of alcohol sales establishments	within 300 m (1,000 ft) of the intersection	0	0

	Worksheet 2B — Crash Modification Factors for Urban and Suburban Arterial Intersections										
(1)	(2)	(3)	(4)	(5)	(6)	(7)					
CMF for Left-Turn Lanes	CMF for Left-Turn Signal	CMF for Right-Turn Lanes	CMF for Right Turn on Red	CMF for Lighting	CMF for Red Light Cameras	Combined CMF					
	Phasing				_						
CMF 1i	CMF 2i	CMF 3i	CMF 4i	CMF 5i	CMF 6i	CMF COMB					
from Table 12-24	from Table 12-25	from Table 12-26	from Equation 12-35	from Equation 12-36	from Equation 12-37	(1)*(2)*(3)*(4)*(5)*(6)					
0.67	1,00	0.86	1.00	0.91	1.00	0.52					

		Worksheet :	2C – Multiple	-Vehicle Collisions by Seve	rity Level for Urban	and Suburban Arterial I	ntersections				
(1)		(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Crash Severity Level	SPF Coefficients		SPF Coefficients		Overdispersion		Proportion of Total	Adjusted	Combined	Calibration	Predicted
				Parameter, k	Initial N _{bimv}	Crashes	N _{bfmv}	CMFs	Factor, C	N _{bimv}	
	ft	om Table 12-1	0	from Table 12-10	from Equation 12-		(4) _{TOTAL} *(5)	(7) from		(6)*(7)*(8)	
	а	ь	C		21		1 TOTAL 1-7	Worksheet 2B		(0) (.) (0)	
Total	-13.36	1.11	0.41	0.80	0,310	1.000	0.310	0.52	1.00	0.163	
Fatal and Injury (FI)	-14.01	1.16	0.30	0.69	0,126	(4) _{FI} /((4) _{FI} +(4) _{PDO}) 0.430	0.133	0.52	1.00	0.070	
Property Damage Only (PDO)	-15.38	1.20	0,51	0.77	0.167	(5) _{TOTAL} -(5) _{FI} 0.570	0.177	0.52	1.00	0.093	

Worksheet 2D – Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections										
(1)	(2)	(3)	(4)	(5)	(6)					
Collision Type	Proportion of Collision Type _(F)	Predicted N http://pg (crashes/year)	Proportion of Collision Type (PDO)	Predicted N Marry (PDO) (crashes/year)	Predicted N birm (TOTAL) (crashes/year)					
	from Table 12-11	(9) _{Ft} from Worksheet 2C	from Table 12-11	(9)epo from Worksheet 2C	(9)eoo from Worksheet 2C					
Total	1.000	0.070	1,000	0.093	0.163					
		(2)*(3) _{FI}		(4)*(5) _{PDO}	(3)+(5)					
Rear-end collision	0.421	0.029	0,440	0.041	0.070					
Head-on collision	0.045	0.003	0.023	0.002	0,005					
Angle collision	0.343	0.024	0.262	0.024	0.048					
Sideswipe	0.126	0,009	0.040	0.004	0.013					
Other multiple-vehicle collision	0.065	0.005	0.235	0.022	0.026					

	Worksheet 2E - Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections											
(1)		(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)		
	SPF Coefficients		Overdispersion Parameter, k	Initial N _{bisv}	Proportion of Total Crashes	Adjusted N _{binny}	Combined CMFs	Calibration Factor, C	Predicted N _{blav}			
Crash Severity Level	fi	rom Table 12-1	2		from Eqn. 12-24;		(4) _{TOTAL} *(5)	(7) from		(6)*(7)*(8)		
	а	b	c	from Table 12-12	(FI) from Eqn. 12- 24 or 12-27		(-7101AL (-7	Worksheet 2B		(0) (1) (0)		
Total	-6.81	0.16	0.51	1.14	0.105	1.000	0.105	0.52	1,00	0,055		
Fatal and Injury (FI)			-	-	0.033	(4) _{FI} /((4) _{FI} +(4) _{PDO}) 0.343	0.036	0.52	1.00	0,019		
Property Damage Only (PDO)	-6.36	0.25	0.55	1,29	0.063	(5) _{TOTAL} -(5) _F ; 0.657	0.069	0.52	1.00	0.036		

	Worksheet 2F Single-V	shicle Collisions by Collision	on Type for Urban and Suburba	an Arterial Intersections	
(1)	(2)	(3)	(4)	(5)	(6)

Collision Type	Proportion of Collision Type _(F)	Predicted N May (Fi) (crashes/year)	Proportion of Collision Type (PDO)	Predicted N Mar (PDO) (crashes/year)	Predicted N blev (TOTAL) (crashes/year)
	from Table 12-13	(9)n from Worksheet 2E	from Table 12-13	(9) _{PDO} from Worksheet 2E	(9)PDo from Worksheet 2E
Total	1.000	0.019	1,000	0.036	0.055
	i	(2)*(3) _{Fl}		(4)*(5) _{PDO}	(3)+(5)
Collision with parked vehicle	0.001	0.000	0.003	0.000	0.000
Collision with animal	0,003	0.000	0.018	0.001	0.001
Collision with fixed object	0.762	0.014	0.834	0.030	0.045
Collision with other object	0.090	0.002	0.092	0.003	0.005
Other single-vehicle collision	0,039	0.001	0,023	0.001	0.002
Single-vehicle noncollision	0.105	0,002	0,030	0.001	0.003

Worksheet 2G — Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections									
(1)	(2)	(3)	(4)	(5)	(6)	(7)			
Annala Saura Maril annal	Predicted N _{blmv}	Predicted N _{biav}	Predicted N _{biav} Predicted N _{bi}		Calibration factor, C,	Predicted N _{ped}			
Crash Severity Level	(9) from Worksheet 2C	(9) from Worksheet 2E	(2) + (3)	from Table 12-16	Cambiadon factor, of	(4)*(5)*(6)			
Total	0.163	0.055	0.218	0.021	1.00	0.005			
Fatal and injury (FI)			_	_	1.00	0.005			

Worksheet 2H Crash M	Workeheet 2H — Crash Modification Factors for Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Signalized Intersections								
(1)	(2)	(3)	(4)						
CMF for Bus Stops	CMF for Schools	CMF for Alcohol Sales Establishments	Combined CMF						
CMF _{1p}	CMF₂ _p	CMF _{3p}	CONDINECTOR						
from Table 12-28	from Table 12-29	from Table 12-30	(1)*(2)*(3)						
	1	2							

		Worksha	et 21 – Vehick	-Pedestrian C	ollisions for l	Jrban and Suburba	ın Arteriai Signalized inte	rsections		
(1)		(2)					(4)	(5)	(6)	(7)
Oracle Oracle Laurel	i	S	SPF Coefficients Overdispersion Nperbase					Combined CMF	Calibration	Predicted N _{ped}
Crash Severity Level	a	<u>f</u>	rom Table 12-	14 d	е е	Parameter, k	from Equation 12-29	(4) from Worksheet 2H	factor, C _i	(4)*(5)*(6)
Total		_				-			1.00	_
Fatal and Injury (FI)			an.		-	-	-	_	1.00	_

Worksheet 2J Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections									
(1) (2) (3) (4) (5) (6) (7)									
0	Predicted N _{bimv}	Predicted N _{blay}	Predicted N _{bl}	f _{b/ker}	Calibration factor, C	Predicted N _{bikel}			
Crash Severity Level	(9) from Worksheet 2C	(9) from Worksheet 2E	(2) + (3)	from Table 12-17	Campianon facion, Ci	(4)*(5)*(6)			
Total	0.163	0.055	0.218	0.016	1,00	0.003			
Fatal and injury (FI)					1,00	0.003			

	eet 2K – Crash Severity Distribution for Urban a		
. (1)	(2)	(3)	(4)
	Fatal and injury (Fi)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 2D and 2F;	(5) from Worksheet 2D and 2F	(6) from Worksheet 2D and 2F;
•	(7) from 2G or 2i and 2J		(7) from 2G or 2I and 2J
	MULTIPLE-VEHICLE		
Rear-end collisions (from Worksheet 2D)	0.029	0,041	0.070
fead-on collisions (from Worksheet 2D)	0.003	0.002	0.005
Angle collisions (from Worksheet 2D)	0.024	0.024	0.048
ideswipe (from Worksheet 2D)	0.009	0.004	0,013
Other multiple-vehicle collision (from Worksheet 2D)	0.005	0.022	0.026
Subtotal	0.070	0.093	0.163
	SINGLE-VEHICLE		
Collision with parked vehicle (from Worksheet 2F)	0.000	0.000	0.000
Collision with animal (from Worksheet 2F)	0,000	0,001	0.001
Collision with fixed object (from Worksheet 2F)	0.014	0.030	0.045
Collision with other object (from Worksheet 2F)	0.002	0.003	0.005
Other single-vehicle collision (from Worksheet 2F)	0.001	0.001	0,002
Single-vehicle noncollision (from Worksheet 2F)	0.002	0.001	0.003
collision with pedestrian (from Worksheet 2G or 2l)	0,005	0.000	0.005
Collision with bicycle (from Worksheet 2J)	0.003	0.000	0.003
Subtotal	0.027	0.036	0.063
otal	0.097	0.129	0.226

Worksheet 2L - Summary Results for Urban and Suburban Arterial Intersections							
(1)	(2)						
Crash severity level	Predicted average crash frequency, N _{predicted int} (crashes/year)						
	(Total) from Worksheet 2K						
Total	0.2						
Fatal and injury (FI)	0.1						
Property damage only (PDO)	0.1						

General	nformation	Location Information			
Analyst Agency or Company Date Performed	Curtis J. Amzen Idaho Transportation Dept. D2 03/10/12	Roadway Intersection Jurisdiction Analysis Year	US-95, Thomcreek to Moscow C3 - Clyde Road Latah County, ID 2017		
Inp	t Data	Base Conditions	Site Conditions		
ntersection type (3ST, 3SG, 4ST, 4SG)		- 1	HE		
ADT major (veh/day)	AADT _{2"AX} = 45,700 (veh/day)	-	7,465		
ADT miner (veh/day)	AADT _{MAX} = 9 300 (vehiday)	_	50		
ntersection lighting (present/not present)		Not Present	fie g		
Calibration factor, C _i		1.00	100		
Data for unsignalized intersections only:			·		
Number of major-road approaches with	left-turn lanes (0,1,2)	0	0		
Number of major-road approaches with	right-turn lanes (0,1,2)	0	0		
Data for signalized intersections only:		-	14		
Number of approaches with left-turn lar	es (0,1,2,3,4) [for 3SG, use maximum value of 3]	0	0		
Number of approaches with right-turn is	nes (0,1,2,3,4) [for 3SG, use maximum value of 3]	0	0		
Number of approaches with left-turn sig	nal phasing [for 3SG, use maximum value of 3]	_	Ď.		
Type of left-turn signal phasing for Leg		Permissive	TWA Applicable		
Type of left-turn signal phasing for Leg	12	_	Not Applicable		
Type of left-turn signal phasing for Leg	13	-	Not Applicable		
Type of left-turn signal phasing for Leg			Mid Agolication		
	n-red prohibited [for 3SG, use maximum value of 3]				
Intersection red light cameras (present		Not Present	Not Present		
	(PedVol) Signalized intersections only	1 1000	10		
Maximum number of lanes crossed by		-	0		
Number of bus stops within 300 m (1,00		0	0		
Schools within 300 m (1,000 ft) of the in	within 300 m (1,000 ft) of the intersection	Not Present	Nill Present		

Worksheet 28 Crash Modification Factors for Urban and Suburban Arterial Intersections									
(1)	(2)	(7)							
CMF for Left-Turn Lanes	CMF for Left-Turn Signal	CMF for Right-Turn Lanes	CMF for Right Turn on Red	CMF for Lighting	CMF for Red Light Cameras	Combined CMF			
	Phasing								
CMF 1i	CMF 2i	CMF 3i	CMF 4i	CMF 5i	CMF 6i	CMF COMB			
from Table 12-24	from Table 12-25	from Table 12-26	from Equation 12-35	from Equation 12-36	from Equation 12-37	(1)*(2)*(3)*(4)*(5)*(6)			
1.00	1.00	1.00	1.00	0.91	1.00	0,91			

		Worksheet :	2C Multiple	Vehicle Collisions by Seve	rity Level for Urban	and Suburban Arterial I	ntersections			
(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Crash Severity Level	SPF Coefficients		Overdispersion		Proportion of Total	Adjusted	Combined	Calibration	Predicted	
				Parameter, k	initial N _{time}	Crashes	N _{bimv}	CMFa	Factor, C,	N _{bitro} v.
	fi	rom Table 12-1	0	from Table 12-10	from Equation 12-		(4) _{TOTAL} *(5)	(7) from	(8)*/7)*	(6)*(7)*(8)
	а	ь	c	HOIN TEEN IE-10	21		(T)TOTAL (U)	Worksheet 2B		(0) (1) (0)
Total	-13.36	1.11	0.41	0.80	0,156	1.000	0.156	0.91	1.00	0.142
Fatal and Injury (FI)	-14.01	1.16	0.30	0.69	0,083	(4) _{FI} /((4) _{FI} +(4) _{PDO}) 0.548	0.086	0.91	1.00	0.078
Property Damage Only (PDO)	-15.38	1.20	0.51	0.77	0.068	(5) _{TOTAL} -(5) _{FI} 0.452	0.071	0.91	1.00	0.064

	Worksheet 2D Multiple-	Vehicle Collisions by Collis	olon Type for Urban and Suburt	oan Arterial Intersections	•
(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type _(P4)	n Predicted N (roo) Proportion of Collision Type Predicted N (crashes/year) Predicted N (roo) Predicte		Predicted N htm (TOTAL) (crashes/year)	
	from Table 12-11	(9)n from Worksheet 2C	from Table 12-11	(9)Poo from Worksheet 2C	(9)eoo from Worksheet 2C
Total	1.000	0.078	1,000	0.064	0.142
		(2)*(3) _{FI}		(4)*(5) _{PDO}	(3)+(5)
Rear-end collision	0.421	0,033	0.440	0.028	0.061
Head-on collision	0.045	0.004	0.023	0.001	0.005
Angle collision	0.343	0.027	0.262	0.017	0.044
Sideswipe	0.126	0.010	0.040	0.003	0.012
Other multiple-vehicle collision	0,065	0.005	0.235	0.015	0.020

	Worksheet 2E Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections										
(1)	-	(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	
	S	PF Coefficien	ts	Overdispersion Parameter, k	Initial N _{bise}	Proportion of Total Crashes	Adjusted N _{bjev}	Combined CMFs	Calibration Factor, C	Predicted N _{bisv}	
Crash Severity Level	f	rom Table 12-1	2		from Eqn. 12-24;		(4) _{TOTAL} *(5)	(7) from		(6)*(7)*(8)	
	a	ь	С	from Table 12-12	(FI) from Eqn. 12- 24 or 12-27		()IOIAL ()	Worksheet 2B		(-) (-)	
Total	-6.81	0.16	0.51	1.14	0.034	1.000	0.034	0.91	1.00	0.031	
Fatal and Injury (FI)	-	_		-	0.010	(4) _{FI} /((4) _{FI} +(4) _{PDO}) 0.359	0,012	0.91	1.00	0.011	
Property Damage Only (PDO)	-8.36	0.25	0.55	1.29	0.019	(5) _{TOTAL} -(5) _H 0.641	0.022	0.91	1.00	0.020	

	Worksheet 2F Single-V	ehicle Collisions by Collisio	on Type for Urban and Suburb	an Arterial Intersections	
(1)	(2)	(3)	(4)	(5)	(6)

Collision Type	Proportion of Collision Type _(Fi)	Predicted N May (R) (crashes/year)	Proportion of Collision Type (PDO)	Predicted N Mar (PDO) (crashes/year)	Predicted N _{May (TOTAL)} (crashes/year	
	from Table 12-13	(9) _{FI} from Worksheet 2E	from Table 12-13	(9)PDO from Worksheet 2E	(9)PDO from Worksheet 2E	
Total	1,000	0.011	1.000	0.020	0.031	
·		(2)*(3) _{FI}		(4)*(5) _{PDO}	(3)+(5)	
Collision with parked vehicle	0.001	0.000	0,003	0.000	0.000	
Collision with animal	0.003	0.000	0.018	0.000	0.000	
Collision with fixed object	0.762	0.008	0.834	0.016	0,025	
Collision with other object	0.090	0.001	0,092	0.002	0.003	
Other single-vehicle collision	0,039	0.000	0.023	0.000	0.001	
Single-vehicle noncollision	0,105	0,001	0.030	0.001	0.002	

	Worksheet 2G Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections												
(1)	(1) (2) (3) (4) (5) (6)												
Crash Severity Level	Predicted N _{blmv}	Predicted N _{blav}	Predicted N _b	fpedi	Calibration factor, C.	Predi cted N _{pedi}							
Cidali Severity Esvel	(9) from Worksheet 2C	(9) from Worksheet 2E	(2) + (3)	from Table 12-16	Cambration lactor, C	(4)*(5)*(6)							
Total	0.142	0.031	0.173	0.021	1.00	0.004							
Fatal and injury (FI)	_		_	1	1.00	0.004							

Worksheet 2H Crash M	Worksheet 2H Crash Modification Factors for Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Signalized Intersections										
(1)	(2)	(3)	(4)								
CMF for Bus Stops	CMF for Schools	CMF for Alcohol Sales Establishments	Combined CMF								
CMF _{1p}	CMF₂p	CMF _{3p}	Combined CMF								
from Table 12-28	from Table 12-29	from Table 12-30	(1)*(2)*(3)								
-	**	-									

	Worksheet 2I — Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Signalized Intersections														
(1)		(2)					(4)	(5)	(6)	(7)					
Crash Severity Level	SPF Coefficients					Overdispersion	N _{pedbese}	Combined CMF	Calibration	Predicted N _{pad}					
Orabit Severity Level	L	f	rom Table 12-1	14		Parameter, k	from Equation 12-29	(4) from Worksheet 2H	factor, C	(4)*(5)*(6)					
	a	b	С	ď	θ		non Equation 12-25	(4) Holli Workshied 211		(4) (3) (0)					
Total	-					-			1.00						
Fatal and Injury (FI)				-		"-	_		1.00						

Worksheet 2J — Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections												
(1)	(2) (3) (4) (5) (6)											
Crash Severity Level	Predicted N _{blow}	Predicted N _{blav}	Predicted N _H	f _{bikel}	Calibration factor, C	Predic ted N _{bikel}						
Clasii Sesetiră Fesei	(9) from Worksheet 2C	(9) from Worksheet 2E	(2) + (3)	from Table 12-17	Calibration factor, o	(4)*(5)*(6)						
Total	0.142	0.031	0.173	0.016	1.00	0.003						
Fatal and injury (FI)		-			1.00	0.003						

Workshi (1)	(2)	(1) (2) (3) (4)										
	Fatal and Injury (FI)	Property damage only (PDO)	Total									
Collision type	(3) from Worksheet 2D and 2F;	(5) from Worksheet 2D and 2F	(6) from Worksheet 2D and 2F;									
	(7) from 2G or 2i and 2J	F.,	(7) from 2G or 2I and 2J									
	MULTIPLE-VEHICLE											
Rear-end collisions (from Worksheet 2D)	0.033	0.028	0.061									
Head-on collisions (from Worksheet 2D)	0.004	0,001	0.005									
Angle collisions (from Worksheet 2D)	0.027	0.017	0.044									
Sideswipe (from Worksheet 2D)	0.010	0.003	0.012									
Other multiple-vehicle collision (from Worksheet 2D)	0.005	0.015	0.020									
Subtotal	0.076	0.064	0.142									
	SINGLE-VEHICLE											
Collision with parked vehicle (from Worksheet 2F)	0.000	0.000	0.000									
Collision with animal (from Worksheet 2F)	0.000	0.000	0.000									
Collision with fixed object (from Worksheet 2F)	0.008	0.016	0.025									
Collision with other object (from Worksheet 2F)	0.001	0.002	0.003									
Other single-vehicle collision (from Worksheet 2F)	0.000	0.000	0.001									
Single-vehicle noncollision (from Worksheet 2F)	0.001	0,001	0.002									
Collision with pedestrian (from Worksheet 2G or 2I)	0.004	0.000	0.004									
Collision with bicycle (from Worksheet 2J)	0.003	0.000	0,003									
Subtotal	0.017	0.020	0,037									
Total Total	0.095	0,084	0.179									

Worksheet 2L Summary Results for Urban and Suburban Arterial Intersections							
(1)	(2)						
Crash severity level	Predicted average crash frequency, N _{predicted int} (crashes/year)						
	(Total) from Worksheet 2K						
Total	0.2						
Fatal and injury (FI)	0.1						
Property damage only (PDO)	0.1						

	Worksheet 2A — General Information and Input				
9	eral Information	Location Information			
Analyst	Curtis J. Amzen	Roadway	US-95, Thorncreek to Moscow		
Agency or Company	Idaho Transportation Dept. D2	Intersection	C3 -Cameron Road		
Date Performed	03/10/12	Jurisdiction	Latah County, ID		
		Analysis Year	2017		
	Input Data	Base Conditions	Site Conditions		
Intersection type (3ST, 3SG, 4ST, 4SG)			%8T		
AADT major (veh/day)	AADT _{194X} = 45,700 (veh/day)		7,695		
AADT minor (veh/day)	.AADT _{it-X} = 9,300 (veh/day)	(- V)	150		
Intersection lighting (present/not present)		Not Present	Pre lent		
Calibration factor, C		1.00	1.00		
Data for unsignalized intersections only:	·				
Number of major-road approaches	with left-turn lanes (0,1,2)	0	0		
Number of major-road approaches	with right-turn lanes (0,1,2)	0	4		
Data for signalized intersections only:	 -	_	=		
Number of approaches with left-tun	n lanes (0,1,2,3,4) [for 3SG, use maximum value of 3]	0	0		
Number of approaches with right-tu	m lanes (0.1,2,3,4) [for 3SG, use maximum value of 3]	0	0		
Number of approaches with left-turn	n signal phasing [for 3SG, use maximum value of 3]	_	0		
Type of left-turn signal phasing for	Leg #1	Permissive	hist égeléseble		
Type of left-turn signal phasing for	Leg #2	i	Not Agricultos		
Type of left-turn signal phasing for	Leg #3	-	Not Approprie		
Type of left-turn signal phasing for		T : : : : : : : : : : : : : : : : : : :	Nor Applicable		
	m-on-red prohibited (for 3SG, use maximum value of 3)				
Intersection red light cameras (pres		Not Present	Matt Property		
	mes (PedVol) - Signalized Intersections only		10		
Maximum number of lanes crossed					
Number of bus stops within 300 m		0	0		
	ne intersection (present/not present)	Not Present	Aut Prines:		
Number of alcohol sales established	ents within 300 m (1,000 ft) of the intersection	0	0		

	Worksheet 2B — Crash Modification Factors for Urban and Suburban Arterial Intersections												
(1) (2) (3) (4) (5) (6)													
CMF for Left-Turn Lanes	CMF for Left-Turn Signal	CMF for Right-Turn Lanes	CMF for Right Turn on Red	CMF for Lighting	CMF for Red Light Cameras	Combined CMF							
	Phasing	-	_										
CMF 1i	CMF 2i	CMF 3i	CMF 4i	CMF 5i	CMF 6i	CMF COMB							
from Table 12-24	from Table 12-25	from Table 12-26	from Equation 12-35	from Equation 12-36	from Equation 12-37	(1)*(2)*(3)*(4)*(5)*(6)							
1,00	1.00	1.00	1.00	0.91	1.00	0,91							

	Worksheet 2C - Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections													
(1)		(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)				
Crash Severity Level	8	PF Coefficien	ts	Overdispersion		Proportion of Total	Adjusted	Combined	Calibration	Predicted				
-				Parameter, k	Initial N _{blmv}	Crashes	N _{birre}	CMFs	Factor, C,	Nphry				
	fı	om Table 12-1	0	from Table 12-10	from Equation 12-		(4) _{TOTAL} *(5)	(7) from		(6)*(7)*(8)				
	a	b	С	II CITI Table 12-10	21		(4) IDIAL (4)	Worksheet 2B		(0) (1) (0)				
Total	-13.36	1.11	0.41	0.80	0.207	1.000	0.207	0.91	1.00	0.189				
Fatal and Injury (FI)	-14.01	1.16	0.30	0.69	0,102	$(4)_{FI}/((4)_{FI}+(4)_{PDO})$	0,106	0,91	1.00	0.097				
						0.512								
Property Damage Only (PDO)	-15.38	1.20	0.51	0.77	0.097	(5) _{TOTAL} -(5) _{FI} 0.488	0.101	0.91	1.00	0.092				

(1)	(2)	(3)	(4)	(5)	(6)	
Collision Type	Proportion of Collision Type _(FI)	Predicted N ***** (Fit) (crashes/year)	Proportion of Collision Type (PDO)	Predicted N Mary (PDO) (crashes/year)	Pradicted N blow (TOTAL) (crashes/year)	
	from Table 12-11	(9)n from Worksheet 2C	from Table 12-11	(9)PDO from Worksheet 2C	(9)Poo from Worksheet 2C	
Total	1.000	0.097	1.000	0.092	0.189	
		(2)*(3) _{Fl}		(4)*(5) _{PDO}	(3)+(5)	
Rear-end collision	0.421	0.041	0.440	0.041	0.081	
Head-on collision	0,045	0.004	0.023	0.002	0.006	
Angle collision	0.343	0.033	0.262	0.024	0.057	
Sideswipe	0.126	0.012	0.040	0.004	0.016	
Other multiple-vehicle collision	0.065	0.006	0.235	0.022	0,028	

		Worksheet	ZE - Single-	Vehicle Collisions by Sever	rity Level for Urban	and Suburban Arterial is	ntersections			
(1)		(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)
	S	PF Coefficien	its	Overdispersion Parameter, k	initial N _{bisy}	Proportion of Total Crashes	Adjusted N _{bimv}	Combined CMFs	Calibration Factor, C ₁	Predicted N _{blav}
Crash Severity Level	i i	rom Table 12-1		from Table 12-12	from Eqn. 12-24; (Fi) from Eqn. 12-		(4) _{TOTAL} *(5)	(7) from Worksheet 2B		(6)*(7)*(8)
	a	ь	С		24 or 12-27					
Total	-6.81	0.16	0.51	1.14	0.048	1.000	0.048	0.91	1.00	0.044
Fatal and Injury (FI)	_	-		_	0.015	(4) _{FI} /((4) _{FI} +(4) _{PDO}) 0.353	0.017	0.91	1.00	0.015
Property Damage Only (PDO)	-8.36	0.25	0,55	1.29	0.027	(5) _{TOTAL} -(5) _{FI} 0.647	0.031	0.91	1.00	0.028

	Worksheet 2F Single-V	ehicie Collisions by Collisio	on Type for Urban and Suburba	ın Arterial Intersections	
(1)	(2)	(3)	(4)	(5)	(6)

Collision Type	Proportion of Collision Type _(FI)	Predicted N May (FI) (crashes/year)	Proportion of Collision Type	Predicted N have (PDO) (crashes/year)	Predicted N blay (TOTAL) (crashes/year)
	from Table 12-13	(9)n from Worksheet 2E	from Table 12-13	(9)PDO from Worksheet 2E	(9)Poo from Worksheet 2E
Total	1.000	0.015	1.000	0.028	0,044
		(2)*(3) _{FI}		(4)*(5) _{PDO}	(3)+(5)
Collision with parked vehicle	0.001	0,000	0.003	0.000	0.000
Collision with animal	0.003	0.000	0.018	0.001	0.001
Collision with fixed object	0.762	0.012	0.834	0.024	0.035
Collision with other object	0.090	0,001	0.092	0.003	0.004
Other single-vehicle collision	0.039	0.001	0.023	0.001	0.001
Single-vehicle noncollision	0.105	0.002	0.030	0.001	0.002

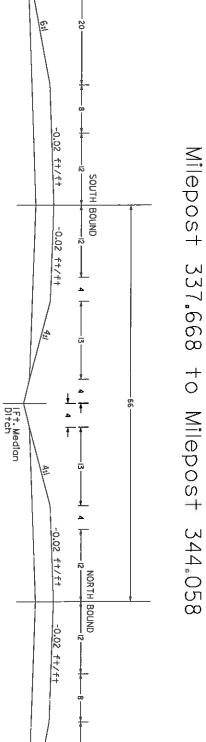
	Worksheet 2G Vehicle-P	edestrian Coliisions for Urb	an and Suburban	Arterial Stop-Controlled	Intersections	*******
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crack Soundity Level	Predicted N _{birn}	Predicted N _{bisv}	Predicted N _{bi}	fpedi	Calibration factor, C	Predicted N _{ped}
Crash Severity Level	(9) from Worksheet 2C	(9) from Worksheet 2E	(2) + (3)	from Table 12-16	Cambradon ractor, C	(4)*(5)*(6)
Total	0,189	0.044	0.232	0.021	1.00	0.005
Fatal and injury (FI)		-	**	-	1.00	0.005

Worksheet 2H - Crash M	odification Factors for Vehicle-Pedestria	n Collisions for Urban and Suburban Arteria	al Signalized Intersections
(1)	(2)	(3)	(4)
CMF for Bus Stops	CMF for Schools	CMF for Alcohol Sales Establishments	Combined CMF
CMF _{1p}	CMF _{2p}	CMF _{3p}	Combined CMP
from Table 12-28	from Table 12-29	from Table 12-30	(1)*(2)*(3)
		-	-

		Workshe	et 21 Vehicle	-Pedestrian C	ollisions for l	Jrban and Suburba	ın Arterlai Signalized inte	rsections		
(1)			(2)	_		(3)	(4)	(5)	(6)	(7)
Crash Severity Level		S	PF Coefficien	ts		Overdispersion	N _{pedbase}	Combined CMF	Calibration	Predicted N _{Ped}
CIASII SEVERILY LEVEL		f	rom Table 12-1	4		Parameter, k	from Equation 12-29	(4) from Worksheet 2H	factor, C	(4)*(5)*(6)
	a	٥	C	d	8		110//12 2402200/1 /2 20	(4) Holli Workshoot 211	[(-) (0) (0)
Total	_	ı		_			-	_	1.00	_
Fatal and Injury (FI)		-	-		_	-			1.00	

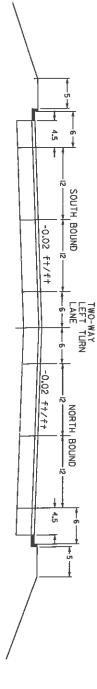
	Worksheet 2J –	Vehicle-Bicycle Collisions	for Urban and Sub	urban Arterial Intersectio	ns	
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Camb Soundby Lovel	Predicted N _{bimv}	Predicted N _{biev}	Predicted N _{bi}	f _{b.tkef}	Calibration factor, C.	Predicted N _{blkel}
Crash Severity Level	(9) from Worksheet 2C	(9) from Worksheet 2E	(2) + (3)	from Table 12-17	Cambiation lactor, of	(4)*(5)*(6)
Total	0.189	0.044	0.232	0.016	1.00	0,004
Fatal and injury (FI)		-	-	-	1.00	0,004

(1)	(2)	(3)	(4)
	Fatal and injury (Fi)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 2D and 2F;	(5) from Worksheet 2D and 2F	(6) from Worksheet 2D and 2F
	(7) from 2G or 2I and 2J		(7) from 2G or 2I and 2J
	MULTIPLE-VEHICLE	•	
Rear-end collisions (from Worksheet 2D)	0.041	0.041	0.081
lead-on collisions (from Worksheet 2D)	0,004	0.002	0.006
Angle collisions (from Worksheet 2D)	0.033	0.024	0.057
Sideswipe (from Worksheet 2D)	0.012	0.004	0,016
Other multiple-vehicle collision (from Worksheet 2D)	0,006	0.022	0.028
Subtotal	0.097	0.092	0.189
	SINGLE-VEHICLE		
Collision with parked vehicle (from Worksheet 2F)	0.000	0.000	0.000
Collision with animal (from Worksheet 2F)	0.000	0.001	0.001
Collision with fixed object (from Worksheet 2F)	0.012	0.024	0.035
Collision with other object (from Worksheet 2F)	0.001	0.003	0.004
Other single-vehicle collision (from Worksheet 2F)	0.001	0.001	0,001
Single-vehicle noncollision (from Worksheet 2F)	0,002	0.001	0.002
Coliision with pedestrian (from Worksheet 2G or 2l)	0.005	0.000	0.005
Collision with bicycle (from Worksheet 2J)	0.004	0.000	0.004
Subtotal	0.024	0.028	0.052
otal	0.121	0.120	0.241


Worksheet 2L — Summary Results for Urban and Suburban Arterial Intersections				
(1)	(2)			
Crash severity level	Predicted average crash frequency, N _{predicted Int} (crashes/year)			
	(Total) from Worksheet 2K			
Total	0.2			
Fatal and injury (FI)	0.1			
Property damage only (PDO)	0.1			

Appendix C.3 Typical Sections, AASHTO HSM Calculations, and Results For Alignment W4

W-4 TYPICAL SECTIONS


RURAL SECTION

-1' Min. Ditch

URBAN SECTION

Milepost 344.058 to Milepost 344.358

Worksheet 1A	General information and input Da	ta for Rural Multilane Roadway	Segments		
General Information		Location information			
Analyst Agency or Company Date Performed	Curtis J. Amzen ITD D2 03/21/12	Roadway Roadway Section Jurisdiction Analysis Year	US-95, Thorncreek to Moscow W4 Rural - Divided Lateh Co, ID 2017		
Input Data		Base Conditions	Site Conditions		
Roadway type (divided / undivided)		Undivided	Divided		
Length of segment, L (mi)			6,4		
AADT (veh/day)	AADT _{MrA} = 89,300 (veh/day)		5,920		
Lane width (ft)		12	12		
Shoulder width (ft) - right shoulder width for divided [if differ for dir	ections of travel, use average width)	8			
Shoulder type - right shoulder type for divided		Paved	Fining		
Median width (ft) - for divided only		30	40		
Side Slopes - for undivided only		1:7 or flatter	Not Applicable		
Lighting (present/not present)		Not Present	Not Present		
Auto speed enforcement (present/not present)		Not Present	Not Pinearit		
Calibration Factor, Cr		1.00	1.00		

	Worksheet 1B (a) Crash Modification Factors for Rural Multiliane Divided Roadway Segments									
(1)	(1) (2) (3) (4) (5) (6)									
CMF for Lane Width	CMF for Right Shoulder Width	CMF for Median Width	CMF for Lighting	CMF for Automated Speed	Combined CMF					
				Enforcement						
CMF 1rd	CMF 2rd	CMF 3rd	CMF 4rd	CMF 5rd	CMF comb					
from Equation 11-16	from Table 11-17	from Table 11-18	from Equation 11-17	from Section 11.7.2	(1)*(2)*(3)*(4)*(5)					
1.00	1.00	0.99	1.00	1.00	0.99					

	Worksheet 1C (a) — Roadway Segment Crashes for Rural Multilane Divided Roadway Segments									
(1)	(2)		(2)		(3)	(4)	(5)	(6)	(7)	
Crash Severity Level	SPF Coefficients		SPF Coefficients		Overdispersion	Combined CMFs	Calibration	Predicted average crash		
	f	from Table 11-5		· ·	Parameter, k	(6) from Worksheet	Factor, Cr	frequency, N predicted refet		
	a	b	C	from Equation 11-9	from Equation 11-10	1B (a)		(3)*(5)*(6)		
Total	-9.025	1.049	1.549	6.980	0.033	0,99	1.00	6.910		
Fatal and injury (Fi)	-8.837	0.958	1.687	3.821	0.029	0,99	1.00	3.783		
Fatal and Injury (FI*)	-8,505	0.874	1.740	2.568	0.027	0.99	1.00	2.542		
Property Damage Only (PDO)	-	_	_	_	_	1	-	(7) _{TOTAL} - (7) _{FI} 3.127		

NOTE: Using the KABCO scale, these include only KAB crashes, Crashes with severity level C (possible injury) are not included.

(1)	(2)	(3)	(4) (5)		(6) (7)		(8)	(9)	
Collision Type	Proportion of Collision Typerrorau		Proportion of Collision Type(Fi)	N predicted re(d) (FI) (crashes/year)	Proportion of Collision Type (FI ⁴)	N predicted rs (FI*) (crashes/year)	Proportion of Collision Type (PDO)	N predicted rs(d) (PDC) (crashes/year)	
		(7)тоты from Worksheet 1C (a)		(7)n from Worksheet 1C (a)	from Table 11-6	(7) Fi ^a from Worksheet 1C (a)	from Table 11-6	(7)PD0 from Worksheet 1C (a)	
Total	1.000	6.910	1.000	3.783	1.000	2.542	1.000	3.127	
	i	(2)*(3) _{TOTAL}		(4)x(5) _{FI}		(6)*(7) _{FI} *		(8)*(9) PDO	
Head-on collision	0.006	0.041	0.013	0.049	0.018	0.046	0.002	0,006	
Sideswipe collision	0.043	0.297	0.027	0.102	0.022	0.056	0,053	0,166	
Rear-end collision	0.116	0.802	0.163	0,617	0.114	0.290	0.088	0.275	
Angle collision	0.043	0.297	0.048	0.182	0.045	0.114	0.041	0.128	
Single-vehicle collision	0.768	5.307	0,727	2.750	0.778	1.978	0.792	2.477	
Other collision	0.024	0.166	0.022	0.083	0.023	0.058	0.024	0.075	

NOTE: * Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

	Worksheet 1E – Summary Results for Rural Multillane Roadway Segments								
(1)	(2)	(3)	(4)						
Crash severity level	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes/mi/year)						
	(7) from Worksheet 1C (a) or (b)	7	(2)/(3)						
Total	6.9	6.4	1.1						
Fatal and Injury (FI)	3.8	6.4	0,6						
Fatal and Injury ^a (Fi ^a)	2,5	6.4	0.4						
Property Damage Only (PDO)	3.1	6.4	0.5						

NOTE: "Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

Works	neet 1A – General Information and Input D	ata for Urban and Suburban R	oadway Segments		
General Inform	ation	Location information			
Analyst	Curtis J. Armzen	Roadway	US-95, Thorncreek to Moscow		
Agency or Company	Idaho Transportation Dept. D2	Roadway Section	W4, Suburban		
Date Performed	03/21/12	Jurisdiction	Lateh County, Idaho		
		Analysis Year	2017		
Input Data		Base Conditions	Site Conditions		
Roadway type (2U, 3T, 4U, 4D, ST)		_	51		
Length of segment, L (mi)		_	0.9		
AADT (veh/day)	AADT _{M-y} = 55,800 (veh/day)		7,465		
Type of on-street parking (none/parallel/angle)		None	Noae		
Proportion of curb length with on-street parking			0		
Median width (ft) - for divided only		15	Not Present		
Lighting (present / not present)		Not Present	Present		
Auto speed enforcement (present / not present)		Not Present	Not Present		
Major commercial driveways (number)		_	2		
Minor commercial driveways (number)		_	7		
Major industrial / institutional driveways (number)		_ 1			
Minor industrial / Institutional driveways (number)			Ö		
Major residential driveways (number)		i	g		
Minor residential driveways (number)			2		
Other driveways (number)					
Speed Category			Posted Special Greater train 30 mats		
coadside fixed object density (fixed objects / mi)		0	Ú		
Offset to roadside fixed objects (ft) [If greater than 30 or h	lot Present, input 30]	30	-30		
Calibration Factor, Cr	·	1.00	1.60		

	Worksheet 1B Crash Modification Factors for Urban and Suburban Roadway Segments								
(1)	(1) (2) (3) (4) (5) (6)								
CMF for On-Street Parking	CMF for Roadside Fixed Objects	CMF for Median Width	CMF for Lighting	CMF for Automated Speed Enforcement	Combined CMF				
CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMF 5r	CMF comb				
from Equation 12-32	from Equation 12-33	from Table 12-22	from Equation 12-34	from Section 12.7.1	(1)*(2)*(3)*(4)*(5)				
1.00	1.00	1.00	0,94	1.00	0.94				

	Worksheet 1C Multiple-Vehicle Nondriveway Collisions by Severity Level for Urban and Suburban Roadway Segments									
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Crash Severity Level	SPF Cor	efficients	Overdispersion Parameter, k	Initial N _{impy}	Proportion of Total Crashes	Adjusted N _{brow}	Combined CMFs	Calibration Factor, Cr	Predicted N _{berny}	
	from Ta	ble 12-3 b	from Table 12-3	from Equation 12-10		(4) _{TOTAL} *(5)	(6) from Worksheet 1B		(6)*(7)*(8)	
Total	-9.70	1.17	0.81	0.625	1.000	0.625	0.94	1.00	0.588	
Fatal and Injury (FI)	-10.47	1.12	0.62	0.185	(4) _{Fl} /((4) _{Fl} +(4) _{PDO}) 0.280	0.175	0.94	1.00	0.164	
Property Damage Only (PDO)	-9.97	1.17	0.88	0.477	(5) _{TOTAL} -(5) _{FI} 0.720	0,450	0.94	1,00	0,423	

Wo	rksheet 1D Multiple-Vehicle No	ndriveway Collisions by (Collision Type for Urban ar	nd Suburban Roadway S	egments
(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type _(Fi)	Predicted N trans (FI) (crashes/year)	Proportion of Collision Type _(PDO)	Predicted N hame (1900) (crashes/year)	Predicted N _{brow (TOTAL)} (crashes/year)
	from Table 12-4	(9)⊨ from Worksheet 1C	from Table 12-4	(9) _{PDO} from Worksheet 1C	(9)тотаட from Worksheet 1C
Total	1,000	0.164	1.000	0.423	0.588
· 		(2)*(3) _{FI}		(4)*(5) _{PDO}	(3)+(5)
Rear-end collision	0,846	0.139	0.651	0.276	0.415
Head-on collision	0.021	0.003	0,004	0,002	0.005
Angle collision	0.050	0.008	0.059	0.025	0.033
Sideswipe, same direction	0.061	0.010	0.248	0.105	0.115
Sideswips, opposite direction	0.004	0.001	0,009	0,004	0,004
Other multiple-vehicle collision	0.018	0.003	0.029	0.012	0.015

	Worksheet 1E Single-Vehicle Collisions by Severity Level for Urban and Suburban Roadway Segments								
(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)
Crash Severity Level		efficients	Overdispersion Parameter, k	initial N _{brav}	Proportion of Total Crashes	Adjusted N _{brav}	Combined CMFs	Calibration Factor, Cr	Predicted N _{brev}
Clasii Gatetti Fatai	from Ta	ble 12-5	from Table 12-5	from Equation 12-13		(4) _{TOTAL} *(5)	(6) from Worksheet 1B		(6)*(7)*(8)
Total	-4.82	0.54	0.52	0.299	1,000	0.299	0,94	1.00	0.281
Fatal and injury (FI)	-4.43	0.35	0.36	0.081	(4) _{FI} /((4) _{FI} +(4) _{PDO}) 0.285	0.085	0.94	1.00	0,080
Property Damage Only (PDO)	-5.83	0.61	0.55	0.203	(5) _{TOTAL} -(5) _{FI} 0.715	0.214	0.94	1.00	0.201

Worksheet 1F - Single-Vehicle Collisions by Collision Type for Urban and Suburban Roadway Segments								
(1) (2) (3) (4) (5) (6)								
Collision Type	Proportion of Collision Type _(Fi)	Predicted N hrav (FI) (crashes/year)	Propertion of Collision Type _(PDO)	Predicted N hav (700) (crashes/year)	Predicted N _{bray} (TOTAL) (crashes/year)			
	from Table 12-6	(9) _{FI} from Worksheet 1E	from Table 12-6	(9)eoo from Worksheet 1E	(9) TOTAL from Worksheet 1E			
Total	1,000	0.080	1.000	0.201	0.281			

		(2)*(3) _{F1}		(4)*(5) _{PDO}	(3)+(5)
Collision with animal	0.016	0.001	0.049	0.010	0.011
Collision with fixed object	0.398	0.032	0.768	0.154	0.186
Collision with other object	0.005	0.000	0,061	0.012	0.013
Other single-vehicle collision	0.581	0.047	0,122	0.024	0,071

Worl	sheet 1G – Multiple-Vahicla Drive	way-Related Collisions by	y Driveway Type for Urban	and Suburban Roadway Segments		
(1)	(2) Number of driveways,	(3) Crashes per driveway per year, N ₁	(4) Coefficient for traffic adjustment, t	(5) Initial N _{ordwy}	(6) Overdispersion parameter, k	
Driveway Type	nı	from Table 12-7	from Table 12-7	Equation 12-16 n _j * N _j * (AADT/15,000) ^t	from Table 12-7	
Major commercial Minor commercial	3	0.165 0.053 0.181	1.172 1.172 1.172	0.146 0.070 0.000		
Major industrial/institutional Minor industrial/institutional Major residential	0	0.024 0.087	1,172 1,172 1,172	0.000	ij i	
Ainor residential Other	2 0	0,016 0,027	1.172	0,014 0,000		
Total			_	0.230	0.10	

Worksheet 1H — Multiple-Vehicle Driveway-Related Collisions by Severity Level for Urban and Suburban Roadway Segments									
(1)	(2)	(3)	(4)	(5)	(6)	(7)			
Crash Severity Level	Initial N _{brdwy}	Proportion of total crashes (f _{dwy})	Adjusted N _{brdwy}	Combined CMFs	Calibration factor, C,	Predicted N _{browy}			
	(5) _{TOTAL} from Worksheet 1G	from Table 12-7	(2) _{TOTAL} * (3)	(6) from Worksheet 1B	Calibration factor, C _f	(4)*(5)*(6)			
otal	0.230	1.000	0,230	0.94	1.00	0.216			
atal and injury (FI)		0.269	0.062	0.94	1.00	0.058			
roperty damage only (PDO)		0.731	0.168	0.94	1.00	0.158			

Worksheet 1! Vehicle-Pedestrian Collisions for Urban and Suburban Roadway Segments										
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
•	Predicted N _{brmv}	Predicted N _{brav}	Predicted N _{brdwy}	Predicted N _{br}	f _{pedr}	Calibration	Predicted N _{ped}			
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3)+(4)	from Table 12-8	factor, C,	(5)*(6)*(7)			
Total	0.588	0.281	0.216	1.085	0.023	1.00	0.025			
Fatal and injury (FI)	-			_		1.00	0.025			

Worksheet 1J - Vehicle-Bicycle Collisions for Urban and Suburban Roadway Segments										
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
	Predicted Normy	Predicted N _{brav}	Predicted N _{brdwy}	Predicted N _b ,	f _{blker}	Calibration	Predicted N _{bker}			
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3)+(4)	from Table 12-9	factor, C,	(5)*(6)*(7)			
Total	0.588	0.281	0.216	1.085	0.012	1.00	0.013			
Fatal and injury (FI)	-					1.00	0.013			

Workshee	at 1K – Crash Severity Distribution for Urban a	nd Suburban Roadway Segments	
(1)	(2)	(3)	(4)
	Fatal and injury (FI)	Property damage only (PDO)	Total
Collinian tomo	(3) from Worksheet 1D and 1F;	(5) from Worksheet 1D and 1F; and	(6) from Worksheet 1D and 1F;
Collision type	(7) from Worksheet 1H; and	(7) from Worksheet 1H	(7) from Worksheet 1H; and
	(8) from Worksheet 1I and 1J		(8) from Worksheet 1I and 1J
	MULTIPLE-VEHICLE		
Rear-end collisions (from Worksheet 1D)	0.139	0.276	0.415
Head-on collisions (from Worksheet 1D)	0.003	0.002	0.005
Angle collisions (from Worksheet 1D)	0.008	0.025	0.033
Sideswipe, same direction (from Worksheet 1D)	0.010	0.105	0,115
Sideswipe, opposite direction (from Worksheet 1D)	0.001	0.004	0.004
Driveway-related collisions (from Worksheet 1H)	0,058	0.158	0.216
Other multiple-vehicle collision (from Worksheet 1D)	0.003	0.012	0.015
Subtotal	0.223	0.581	0.804
	SINGLE-VEHICLE		
Collision with animal (from Worksheet 1F)	0.001	0.010	0.011
Collision with fixed object (from Worksheet 1F)	0.032	0.154	0.186
Collision with other object (from Worksheet 1F)	0.000	0.012	0.013
Other single-vehicle collision (from Worksheet 1F)	0.047	0.024	0.071
Collision with pedestrian (from Worksheet 1I)	0,025	0.000	0.025
Collision with bicycle (from Worksheet 1J)	0.013	0.000	0,013
Subtotal	0.118	0.201	0,319
Total	0.341	0,782	1.123

Worksheet 1L — Summary Results for Urban and Suburban Roadway Segments							
(1)	(2)	(3)	(4)				
Crash Severity Level	Predicted average crash frequency, N predicted ra (crashes/year)	Roadway segment length, L (mi)	Crash rate (crashes/ml/year				
	(Total) from Worksheet 1K	,	(2) / (3)				
Total	1.1	0.30	3.7				
Fatal and injury (FI)	0.3	0.30	1.1				
Property damage only (PDO)	0,8	0.30	2.6				

General Informati	on	Location Information			
Analyst Agency or Company Date Performed	Curtis J. Amzen Idaho Transportation Dept. D2 03/10/12	Roadway Intersection Jurisdiction Analysis Year	US-95, Thorncreek to Moscow W4 - Old US-95 North Latah County, ID 2017		
Input Data		Base Conditions	Site Conditions		
Intersection type (3ST, 3SG, 4ST, 4SG)		- Sections			
AADT major (veh/day)	AADT _{H-X} = 45,700 (vel/day)		5,920		
AADT minor (veh/day)	A^DTHAX = 9.300 (vehrlay)	-	1,455		
Intersection lighting (present/not present)		Not Present	Eveseri		
Calibration factor, C _i		1.00	1.00		
Data for unsignalized intersections only:					
Number of major-road approaches with left-turn is	anes (0,1,2)	0			
Number of major-road approaches with right-turn	lanes (0,1,2)	0			
Data for signalized intersections only:		-	-		
Number of approaches with left-turn lanes (0,1,2,	3,4) [for 3SG, use maximum value of 3]	0	0		
Number of approaches with right-turn lanes (0,1,2	(3,4) [for 3SG, use maximum value of 3]	Ö	0		
Number of approaches with left-turn signal phasi:	g [for 3SG, use maximum value of 3]	-			
Type of left-turn signal phasing for Leg #1	-	Permissive	Hist Admicable		
Type of left-turn signal phasing for Leg #2		_	NOt Applicable		
Type of left-turn signal phasing for Leg #3		-	Not Adultoatile		
Type of left-turn signal phasing for Leg #4 (if appl			Not Applicable		
Number of approaches with right-turn-on-red prof			0		
Intersection red light carneras (present/not present		Not Present	NK PINSKIII		
Sum of all pedestrian crossing volumes (PedVol)			10		
Maximum number of lanes crossed by a pedestria		-	0		
Number of bus stops within 300 m (1,000 ft) of the		0	0		
Schools within 300 m (1,000 ft) of the intersection		Not Present	NO Presental		
Number of alcohol sales establishments within 30	O IN (1,000 IT) OF THE INTERSECTION	0			

Worksheet 2B Crash Modification Factors for Urban and Suburban Arterial Intersections									
(1)	(2)	(3)	(4)	(5)	(6)	(7)			
CMF for Left-Turn Lanes	CMF for Left-Turn Signal	CMF for Right-Turn Lanes	CMF for Right Turn on Red	CMF for Lighting	CMF for Red Light Cameras	Combined CMF			
	Phasing				_				
CMF 1i	CMF 2i	CMF 3i	CMF 4i	CMF 5i	CMF 6i	CMF COME			
from Table 12-24	from Table 12-25	from Table 12-26	from Equation 12-35	from Equation 12-36	from Equation 12-37	(1)*(2)*(3)*(4)*(5)*(6)			
0,67	1.00	0.86	1.00	0.91	1.00	0.52			

		Worksheet	2C Multiple	Vehicle Collisions by Seve	rity Level for Urban	and Suburban Arterial I	ntersections			
(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Crash Severity Level	SPF Coefficients		Overdispersion Parameter, k	initial N _{birm}	Proportion of Total Crashes	Adjusted N _{bloov}	Combined CMFs	Calibration Factor, C	Predicted N _{blmv}	
	a fi	rom Table 12-1 b	10 L c	from Table 12-10	from Equation 12- 21		(4) _{TOTAL} *(5)	(7) from Worksheet 2B]	(6)*(7)*(8)
:Total	-13.36	1.11	0.41	0.80	0,480	1.000	0.480	0.52	1.00	0.252
Fatal and Injury (FI)	-14.01	1.16	0.30	0.69	0.174	(4) _{Fi} /((4) _{Fi} +(4) _{FDO}) 0.376	0.181	0.52	1.00	0.095
Property Damage Only (PDO)	-15.38	1.20	0.51	0.77	0.288	(5) _{TOTAL} -(5) _{FI} 0.624	0,299	0.52	1.00	0.157

Worksheet 2D Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections									
(1)	(2)	(3)	(4)	(5)	(6)				
Collision Type	Proportion of Collision Type(F)	Predicted N Many (FI) (crashes/year)	Proportion of Collision Type	Predicted N Marr (PDD) (crashes/year)	Predicted N how (TOTAL) (crashes/yea				
	from Table 12-11	(9) _{FI} from Worksheet 2C	from Table 12-11	(9)PDO from Worksheet 2C	(9)PDc from Worksheet 2C				
Total	1.000	0.095	1.000	0.157	0.252				
		(2)*(3) _{Fl}		(4)*(5) _{PDO}	(3)+(5)				
Rear-end colfision	0.421	0.040	0.440	0.069	0.109				
Head-on collision	0.045	0,004	0.023	0.004	0.008				
Angle collision	0.343	0.032	0.262	0.041	0.074				
Sideswipe	0.126	0.012	0.040	0.006	0.018				
Other multiple-vehicle collision	0.065	0.006	0.235	0.037	0.043				

	Worksheet 2E Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections										
(1)		(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	
	SPF Coefficients		Overdispersion Parameter, k	Initial N _{bisv}	Proportion of Total Crashes	Adjusted N _{birn}	Combined CMFs	Calibration Factor, C	Predicted		
Crash Severity Level	f	rom Table 12-1	12		from Eqn. 12-24:		(4) _{TOTAL} *(5)	(7) from		(0)+(7)+(0)	
	l a	Ь		from Table 12-12	(FI) from Eqn. 12-		(4)TOTAL (3)	Worksheet 2B		(6)*(7)*(8)	
	-		`		24 or 12-27		L				
Total	-6.81	0.16	0.51	1.14	0.181	1.000	0.181	0.52	1.00	0.095	
Fatal and Injury (FI)		_	_	_	0.056	(4) _{FI} /((4) _{FI} +(4) _{PDO}) 0.333	0.060	0.52	1.00	0.032	
Property Damage Only (PDO)	-8.36	0.25	0,55	1.29	0.112	(5) _{TOTAL} -(5) _{FI} 0.667	0.121	0.52	1.00	0.063	

Worksheet 2F Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections								
(1)	(2)	(3)	. (4)	(5)	(6)			

Collision Type	Proportion of Collision Type ₍₇₀₎	Predicted N May (F) Proportion of Collision Type (Crashes/year) (PDO)		Predicted N May (PDO) (crashes/year)	Predicted N _{bisv} (TOTAL) (Crashes/year)	
	from Table 12-13	(9) _{FI} from Worksheet 2E	from Table 12-13	(9)PDO from Worksheet 2E	(9)PDO from Worksheet 2E	
Total	1.000	0.032	1.000	0.063	0.095	
		(2)*(3) _{FI}]	(4)*(5) _{PDO}	(3)+(5)	
Collision with parked vehicle	0.001	0.000	0.003	0.000	0.000	
Collision with animal	0.003	0.000	0.018	0.001	0.001	
Collision with fixed object	0.762	0.024	0.834	0,053	0.077	
Collision with other object	0.090	0.003	0.092	0.006	0.009	
Other single-vehicle collision	0.039	0.001	0.023	0.001	0.003	
Single-vehicle noncollision	0.105	0.003	0.030	0.002	0.005	

Worksheet 2G Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Crash Severity Level	Predicted N _{ideov}	Predicted N _{blav}	Predicted N _{bl}	f _{ped}	Calibration factor, C	Predicted N _{ped}	
	(9) from Worksheet 2C	(9) from Worksheet 2E	9) from Worksheet 2E (2) + (3)		Campradon factor, C	(4)*(5)*(6)	
Total	0.252	0.095	0.347	0.021	1.00	0.007	
Fatal and injury (FI)		••		-	1.00	0.007	

Worksheet 2H Crash Modification Factors for Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Signalized Intersections							
(1)	(2)	(3)	(4)				
CMF for Bus Stops	CMF for Schools	CMF for Alcohol Sales Establishments	Combined CMF				
CMF _{1p}	CMF _{2p}	CMF _{3p}	Cornbined CMF				
from Table 12-28	from Table 12-29	from Table 12-30	(1)*(2)*(3)				
	-	<u> </u>					

Worksheet 21 – Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Signalized Intersections										
(1)	(2)					(3)	(4)	(5)	(6)	(7)
Crash Severity Level	SPF Coefficients					Overdispersion	N _{perbase}	Combined CMF	Calibration	Predicted N _{peri}
Grasii Seveniy Lever		f	rom Table 12-1	14		Parameter, k	from Equation 12-29	(4) from Worksheet 2H	factor, C	(4)*(5)*(6)
	a	b	С	d	8		IIOIII Equadoi 12-25	(4) IIOIII VYORKANCEI ZIT		(4) (5) (6)
Total	-		_	[–		_		-	1.00	_
Fatal and Injury (FI)			_	_			-		1,00	_

Worksheet 2J Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Crash Severity Level	Predicted N _{birm}	Predicted N _{biav}	Predicted N _{bi}	f _{blker}	Calibration factor, C	Predicted N _{blkei}	
	(9) from Worksheet 2C	(9) from Worksheet 2E	(2) + (3)	from Table 12-17	Cambradon factor, C _j	(4)*(5)*(6)	
Total	0.252	0.095	0.347	0.016	1.00	0.006	
Fatal and injury (FI)	_	_	_	-	1.00	0.006	

(1)	(2)	(3)	(4)
•	Fatal and injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 2D and 2F;	(5) from Worksheet 2D and 2F	(6) from Worksheet 2D and 2F
	(7) from 2G or 2l and 2J		(7) from 2G or 2l and 2J
	MULTIPLE-VEHICLE		
Rear-end collisions (from Worksheet 2D)	0.040	0.069	0.109
lead-on collisions (from Worksheet 2D)	0.004	0.004	0,008
Angle collisions (from Worksheet 2D)	0.032	0.041	0.074
Sideswipe (from Worksheet 2D)	0,012	0,006	0.018
Other multiple-vehicle collision (from Worksheet 2D)	0.006	0.037	0.043
Subtotal	0.095	0.157	0.252
·	SINGLE-VEHICLE		
Colfision with parked vehicle (from Worksheet 2F)	0.000	0.000	0.000
Collision with animal (from Worksheet 2F)	0.000	0.001	0.001
Collision with fixed object (from Worksheet 2F)	0.024	0.053	0,077
Collision with other object (from Worksheet 2F)	0.003	0.006	0.009
Other single-vehicle collision (from Worksheet 2F)	0.001	0,001	0.003
Single-vehicle noncollision (from Worksheet 2F)	0.003	0.002	0.005
Cotlision with pedestrian (from Worksheet 2G or 2I)	0.007	0.000	0.007
Collision with bicycle (from Worksheet 2J)	0,006	0,000	0.006
Subtotal	0,044	0,063	0.108
otal	0.139	0.220	0.359

Worksheet 2L Summary Results for Urban and Suburban Arterial Intersections					
(1)	(2)				
Crash severity level	Predicted average crash frequency, N _{predicted int} (crashes/year)				
	(Total) from Worksheet 2K				
Total	0.4				
Fatal and injury (FI)	0.1				
Property damage only (PDO)	0.2				

_	Worksheet 2A - General Info	rmation and input Data for Rura	Multilane Highway Intersections
	General Information		Location Information
Analyst Agency or Company Date Performed	Curlis J. Arnzen ITD District 2 03/10/12	Roadway Intersection Jurisdiction Analysis Year	US-95, Thorncreck to Moscow W4, Ckt US-95 South Latch Co., ID 2017
	Input Data		Site Conditions
intersection type (3ST, 4ST, 4SG)			3
AADT _{major} (veh/day)	AADT _{HEX} = 78,300 (veh/day)	_	5,950
AADT _{piner} (veh/day)	AADT _{N-X} = 23,010 (valvelay)		500
Intersection skew angle (degrees)		0	(<u>)</u>
Number of non-STOP-controlled approx	sches with left-turn lanes (0, 1, 2)	0	
Number of non-STOP-controlled approaches with right-turn lanes (0, 1, 2, 3, or 4)		0	
Intersection lighting (present/not present	0	Not Present	Strong
Calibration Factor, C		1.00	1.00

Worksheet 2B — Crash Modification Factors for Rural Multillane Highway Intersections							
(1)	(2)	(3)	(4)	(5)	(6)		
Crash Severity Level	CMF for Intersection Skew Angle (CMF 1)	CMF for Left-Turn Lanes	CMF for Right-Turn Lanes	CMF for Lighting	Combined CMF (CMF COMB)		
	from Equations 11-18 or 11-20 and 11-19 or	(CMF _{2i})	(CMF ₃)	(CMF ₄)			
	11-21	from Table 11-22	from Table 11-23	from Equation 11-22	(2)*(3)*(4)*(5)		
Total	1,00	0.56	0,86	1.00	0.48		
Fatal and Injury (FI)	1.00	0.45	0.77	1.00	0.35		

Note: The 44eg Signalized Intersection (4SG) models do not have base conditions and so can only be used for estimation purposes. As a result, there are not CMFs provided for the 4SG condition.

Worksheet 2C - Intersection Crashes for Rural Multilane Highway Intersections								
(1)	(2)		(3)	(4)	(5)	(6)	(7)	
Crash Severity Level	SPF Coefficients		SPF Coefficients		Overdispersion Parameter, k	Combined CMFs	Calibration	Predicted average crash frequency,
	from Table 11-7 or 11-8				from (6) of	Factor, C _i	N predicted int	
	8	ь	c of d (4SG)	from Equation 11-11 or 11-12	from Table 11-7 or 11-8	Worksheet 2B		(3)*(5)*(6)
Total	-1 <u>2.526</u>	1.204	0.236	0.548	0.460	0.48	1.00	0,264
Fatal and injury (FI)	-12.664	1.107	0.272	0.257	0,569	0.35	1.00	0.089
Fatal and Injury® (FI®)	-11.989	1,013	0.228	0.170	0.566	0,35	1.00	0.059
				_	·		_	(7) TOTAL - (7) FI
Property Damage Only (PDO)	_	_	_	_	_	_	_	0.175

NOTE: "Using the KABCO scale, these include only KAB creative. Creative with severity level C (possible injury) are not included.

Worksheet 2D — Crashes by Severity Lavel and Collision Type for Rural Multiliane Highway Intersections								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(6)	(9)
Collision Type	Proportion of	N predicted fet (TOTAL)	Proportion of	N produce to (m) (crashes/year)	Proportion of	N predicted int	Proportion of	N predicted let (PDO) (crashes/year)
	Collision	(crashes/ye 3r)	Collision		Collision Type (FI*)	(Ff)	Collision Type	
	Typerrorau		Typem			/crashos/war)	(PDO)	
	from Table 11-9	(7) TOTAL from Worksheet 2C	from Table 11-9	(7)m from Worksheet 2C	from Table 11-9	(7) Fi ² from Worksheet 2C	from Table 11-9	(7) _{POO} from Worksheet 2C
Total	1,000	0.264	1.000	0,089	1.000	0.059	1.000	0.175
		(2)°(3) _{TOTAL}		(4)x(5) _{F1}		(6)*(7) FI *		(8)*(9) _{POO}
Head-on collision	0.029	0.008	0,043	0.004	0.052	0.003	0.020	0,003
Sideswipe collision	0.133	0.035	0.058	0,005	0.057	0.003	0.179	0.031
Rear-end collision	0.289	0,076	0.247	0.022	0.142	0,008	0.315	0.055
Angle collision	0.263	0.069	0,369	0.033	0.381	0.022	0.198	0,035
Single-vehicle collision	0,234	0.062	0.219	0.020	0.284	0.017	0.244	0.043
Other collision	0,052	0.014	0.064	0,006	0,084	0.005	0.044	0.008

NOTE: " Using the KABCO scale, these include only KAB crashos. Crashes with severity level C (possible injury) are not included.

Worksheet 2E - Summary Results for Rural Multillane Highway Intersections						
(1)						
Crash severity level	Predicted average crash frequency (crashes / year)					
	(7) from Worksheet 2C					
Total	0.3					
Fatal and Injuly (FI)	0.1					
Fatal and Injury® (FI®)	0,1					
Property Damage Only (PDO)	0.2					

NOTE: " Listing the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

	Seneral Information		Location Information
Analyet	Curtis J. Arnzen	Roadway	US-95, Thorncreek to Moscow
Agency or Company	ITD District 2	Intersection	W4 - Eid Intersection
Date Performed	03/10/12	Jurisdiction	Latah Co., ID
		Analysis Year	2017
	Imput Data	Base Conditions	Site Conditions
ntersection type (3ST, 4ST, 4SG)		_	ALGER STATE OF THE
AADT _{resign} (veh/day)	AAOT _{M.X} = 79.300 (veh/day)		5,921
AADT _{minor} (veh/day)	AADT _{H-C} = 23,000 (veh/ds/)	-	65
ntersection skew angle (degrees)		0	
lumber of non-STOP-controlled approach	es with left-turn lanes (0, 1, 2)	0	
lumber of non-STOP-controlled approach	ies with right-turn lanes (0, 1, 2, 3, or 4)	0	Charles and the Control of the Contr
ntersection lighting (present/not present)		Not Present	White
Calibration Factor, C		1.00	1,00

	Worksheet 2	B - Crash Modification Facto	rs for Rural Multilane Highway interse	ctions	
	(2)	(3)	(4)	(5)	(6)
Crash Severity Level	CMF for Intersection Skew Angle (CMF 1i)	CMF for Left-Turn Lanes	CMF for Right-Turn Lanes	CMF for Lighting	Combined CMF (CMF COMB)
	from Equations 11-18 or 11-20 and 11-19 or	(CMF _{2i})	(CMF _{3I})	(CMF₄)	l
	11-21	from Table 11-22	from Table 11-23	from Equation 11-22	(2)*(3)*(4)*(5)
Total	1.00	1.00	1,00	1.00	1.00
Fatal and Injury (FI)	1,00	1.00	1.00	1,00	1.00

Note: The 4-tag Signalized intersection (4SG) models do not have been conditions and so can only be used for estimation purposes. As a result, there are not CMFs provided for the 4SG condition.

			Workshe	et 2C - Intersection Crashes fo	or Rural Multilane Highway Intersection	ons		
(1)		(2)		(3)	(4)	(5)	(6)	(7)
Crash Severity Level		PF Coefficient	3	N sufint	Overdispersion Parameter, k	Combined CMFs	Calibration	Predicted average crash frequency,
	from	Table 11-7 or	11-8			from (6) of	Factor, C ₁	N predicted int
	а	ь	c or d (48G)	from Equation 11-11 or 11-12	from Table 11-7 or 11-8	Worksheet 2B		(3)*(5)*(6)
Total	-12.526	1.204	0.236	0.339	0.460	1.00	1.00	0.339
Fatal and injury (FI)	-12,664	1.107	0.272	0.148	0.569	1.00	1.00	0.148
Fatal and Injury* (FI*)	-11.989	1.013	0,228	0,107	0,566	1.00	1.00	0,107
Property Damage Only (PDO)	_	-	-	-	-	-	-	(7) _{TOTAL} - (7) _{FI} 0.191

NOTE: "Using the KABCO scale, these include only KAB clustes. Creative with severity level C (possible injury) are not included.

		Worksheet ZD - Cras	shes by Severity	Level and Collision Type for R	tural Multilane Highwa	y intersections		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Typerrorau	N proteind int (TOTAL) (crashes/year)	Proportion of Collision Typem	N predicted for (FI) (crashes/year)	Proportion of Collision Type (Fi ^a)	N predicted int (FI [*]) (crashes/wer)	Proportion of Collision Type (PDC)	N predicted for (PDO) (crashes/year)
	from Table 11-9	(7) таты. from Worksheet 2C	from Table 11-9	(7)= from Worksheet 2C	from Table 11-9	(7) Fi ^a from Worksheet 2C	from Table 11-9	(7)roo from Worksheet 2C
Total	1.000	0.339	1.000	0.148	1.000	0.107	1.000	0.191
		(2)*(3) _{TOTAL}		(4)x(5) _F ∣		(6)°(7) FI ⁸		(8)*(9) _{PDO}
Head-on collision	0.029	0.010	0.043	0.006	0.052	0.006	0.020	0.004
Sideswipe collision	0.133	0.045	0.058	0.009	0.057	0.006	0.179	0.034
Rear-end collision	0.289	0,098	0.247	0,036	0.142	0,015	0,315	0,060
Angle collision	0.263	0.089	0.369	0.054	0.381	0.041	0.198	0.038
Single-vehicle collision	0,234	0.079	0.219	0.032	0.284	0.030	0.244	0.047
Other collision	0.052	0.018	0.064	0.009	0.084	0,009	0.044	0.008

NOTE: * Using the KABCO scale, these include only KAB crawnes. Crawnes with severity level C (possible injury) are not included.

workstieet 2t - Summary Resul	ts for Rural Multilane Highway Intersections
(1)	(2)
Crash severity level	Predicted average crash frequency (crashes / year)
	(7) from Worksheet 2C
Total	0.3
Fatal and injury (FI)	0.1
Fatal and Injury ^a (FI ^a)	0.1
Property Damage Only (PDO)	0.2

NOTE: * Using the KABCO scale, these include only KAB crashos. Crashes with severity level C (possible injury) are not included.

	Worksheet 2A General Info	rmation and input Data for Rura	Multilane Highway Intersections
	General Information		Location information
Analyst Agency or Company Date Performed	Curtis J. Amzen ITD Oistrict 2 03/10/12	Roadway Intersection Jurisdiction Analysis Year	143-95 (homever to Messew 144 - Japana Lattle Co., ID 2017
	Input Data	Base Conditions	Site Conditions
Intersection type (3ST, 4ST, 4SG)			10.000
AADT _{major} (veh/day)	ADT _{thux} = 78,300 (valuelay)	-	1 1 1 2 10
AADT _{minor} (veh/day)	AADT _{Hust} = 25,000 (vehiclay)	-	50
Intersection skew angle (degrees)		D	0
Number of non-STOP-controlled approx	ches with left-turn lanes (0, 1, 2)	0	
Number of non-STOP-controlled approx	ches with right-turn lanes (0, 1, 2, 3, or 4)	0	
Intersection lighting (present/not present		Not Present	Add Second Co.
Calibration Factor, C		1.00	1.00

-	Worksheet :	2B — Crash Modification Facto	rs for Rural Multilane Highway Interse	stions	
(1)	(2)	(3)	(4)	(5)	(6)
Crash Severity Level	CMF for Intersection Skew Angle (CMF 4)	CMF for Left-Turn Lanes	CMF for Right-Turn Lanes	CMF for Lighting	Combined CMF (CMF COMB)
	from Equations 11-18 or 11-20 and 11-19 or	(CMF _{2i})	(CMF _{3i})	(CMF ₄₁)	
	11-21	from Table 11-22	from Table 11-23	from Equation 11-22	(2)*(3)*(4)*(5)
Total	1.00	1.00	1.00	1.00	1.00
Fatal and Injury (FI)	1.00	1,00	1.00	1.00	1.00

Note: The 4-leg Signalized Intersection (4SG) models do not have base conditions and so can only be used for estimation purposes. As a result, there are not CMFs provided for the 4SG condition.

			Workshi	et 2C — Intersection Crashes fo	or Rural Multilane Highway Intersecti	oris		
(1)		(2)		(3)	(4)	(5)	(6)	<u> </u>
Crash Severity Level	8	PF Coefficient	5	N spfint	Overdispersion Parameter, k	Combined CMFs	Calibration	Predicted average crash frequency,
	from	Table 11-7 or	11-8			from (6) of	Factor, C ₁	N pr. stated lint
	a	ь	cord (4SG)	from Equation 11-11 or 11-12	from Table 11-7 or 11-8	Worksheet 2B		(3)*(5)*(6)
Total	-12.526	1.204	0.236	0.318	0,460	1.00	1.00	0.318
Fatal and Injury (FI)	-12.664	1.107	0.272	0.137	0.569	1.00	1.00	0.137
Fatal and injury" (FI")	-11.989	1.013	0,228	0.100	0.566	1,00	1.00	0.100
Property Damage Only (PDO)	_	_		_	_		_	(7) _{TOTAL} - (7) _{F1}
,								0,181

NOTE: " Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

		Worksheet 2D - Cra	shee by Severity	Level and Collision Type for R	tural Multilane Highwa	y intersections		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of	M predicted int (TOTAL)	Proportion of	N productor or (F) (crashes/year)	Proportion of	N predicted int	Proportion of	N predicted ant (PDO) (crashes/year)
	Collision	(crashes/year)	Collision		Collision Type (FI*)	(FIT)	Collision Type	,()
	TVDerroTAL		Typens			(crashes/weer)	(PDO)	
	from Table 11-9	(7) roru, from Worksheet 2C	from Table 11-9	(7)m from Worksheet 2C	from Table 11-9	(7) Fi [®] from Worksheet 2C	from Table 11-9	(7)roo from Worksheet 2C
Total	1.000	0.318	1,000	0.137	1.000	0.100	1.000	0.181
		(Z)*(3) _{TOTAL}		(4)x(5) _{F1}		(6)*(7) _{F1} ⁸	["	(8)*(9) _{PDO}
Head-on collision	0.029	0.009	0.043	0.006	0,052	0.005	0.020	0.004
Sideswipe collision	0.133	0.042	0.058	0,008	0.057	0.006	0.179	0.032
Rear-end collision	0.289	0.092	0.247	0.034	0.142	0.014	0.315	0.057
Angle collision	0.263	0.084	0.369	0.051	0.381	0.038	0.198	0.036
Single-vehicle collision	0.234	0.074	0.219	0,030	0.284	0.029	0.244	0.044
Other collision	0.052	0.017	0.064	0,009	0.084	0.008	0.044	800.0

NOTE: "Using the KABCO scale, these include only KAB creates. Creates with severity level C (possible injury) are not included.

Worksheet 2E – Summary R	esults for Rural Multilane Highway Intersections
(1)	(2)
Crash severity level	Predicted average crash frequency (crashes / year)
	(7) from Worksheet 2C
Total	0.3
Fatal and Injury (FI)	0,1
Fatal and injury ^a (Fi ^a)	Q.1
Property Damage Only (PDO)	0.2

NOTE: * Using the KABCO scale, these include only KAB creates. Creates with enverity level C (possible injury) are not included.

Appendix C.4 Traffic Counts For Project Area Assumed ADT's of Project Area and County Roads

ADT Volume Projection Report

		Route	US095					급	Traffic Data 2010	2010			
	Segment From		1539	Milepost From	From	337.180		Start P	Start Projection 2017	2017			
	Segment To	_	1540	Milepost To	ost To	342.930		End P	End Projection 2037	1 2037			
	Seg	Segment	Milepost	ost									
Year	From	То	From	0.1	AADT	CAADT	VHQ	DHV %	CDHV	CDHV %	밁	From Description	To Description
2010	001539	001539	337.180	337.668	4,900	650	567	11.5	53	8.106	60/40%	THORN CREEK RD	END NEW ALIGNMENT
	001540	001540	337.668	339.620	4,900	680	567	11.5	55	8.106	60/40%	END NEW ALIGNMENT	EID RD
			339.620	342.930	5,300	680	611	11.5	55	8.071	60/40%	EID RD	
	2010		Weighted	nted	5,130	677	593	11.50	55	8.07	٠		
2017	001539	001539	337,180	337,668	5,654	809	650	11.4	65	8.044	60/40%	THORN CREEK RD	END NEW ALIGNMENT
	001540	001540	337.668	339.620	5,657	847	650	11.4	68	8.044	60/40%	END NEW ALIGNMENT	EID RD
			339.620	342.930	6,113	847	700	11.4	68	8.014	60/40%	EID RD	
	2017		Weighted	nted	5,920	843	679	11.40	88	8.01			:
2037	001539	001539	337.180	337.668	7,809	1,264	885	11.3	100	7.934	60/40%	THORN CREEK RD	END NEW ALIGNMENT
	001540	001540	337.668	339.620	7,821	1,323	886	11.3	105	7.933	60/40%	END NEW ALIGNMENT	EID RD
			339,620	342,930	8,437	1,323	954	11.3	105	7.912	60/40%	EID RO	
	2037		Weighted	hted	8,175	1,318	925	11.30	104	7.91			

J 16, 2011

Page 1 of 1

ADT Volume Projection Report

			80 7.87	80	11.2	1,148	10,221 1,011 1,148 11.2	10,221	ages	Weighted averages	Wei	2037	
PALOUSE RIVER DR	80 7.865 60/40% CLYDE RD	60/40%	7.865	80	11.2	1,148 11.2	1,011	10,221	344.116 10,221	342.933	001540		2037
			51 7.95	<u>5</u> 1	848 11.3	848	647	7,465	ages	Weighted averages	Wei	2017	
PALOUSE RIVER DR	51 7.947 60/40% CLYDE RD	60/40%	7.947	51	11.3	848	647	7,465	344.116	342.933	001540		2017
			42 7.99	42	742 11.4	742	520	6,500	iges	Weighted averages	Wei	2010	
PALOUSE RIVER DR	CLYDE RD	60/40%		42	11.4	742	520	6,500.	344.116	342.933	001540	001540	2010
To Description	From Description	DIR	CDHV %	CDHV	DHV	DHV	CAADT	AADT	ost To	Milepost	Segment To	Seg	Year
			n 2017 n 2037	Start Projection 2017 End Projection 2037	Start F End F		342.93 344.11		Milepost From Milepost To	540	gment From 1540 Segment To 1540	Segment From Segment To	
			a 2010	Traffic Data 2010	뒮					S095	Route US095		

Assumed ADTs of County Roads within Thorncreek to Moscow Corridor

```
E2
North Old US-95 - 1450
South Old US-95 – 500
C3
North Old US-95 - 500
South Old US-95 - 500
Eid Road – 65 (From North Latah Highway District Transportation Plan)
Clyde Road – 50
Cameron Road - 100
W4
North Old US-95 - 1450
South Old US-95 – 500
Jacksha Road – 50
Zeitler Road - 50
Snow Road – 50
Eid Road - 65 (From North Latah Highway District Transportation Plan)
```

Appendix D

Thorncreek Road to Moscow Environmental Matrix Safety Analysis Alignments Carried Forward Dated February 15, 2011

THORNCREEK ROAD TO MOSCOW ENVIRONMENTAL MATRIX SAFETY ANALYSIS ALIGNMENTS CARRIED FORWARD DHP-NH-4110 (156) KEY# 09294

DISTRICT TRAFFIC ENGINEER

David P. Couch, P.E.

Feb 15, 2011

Date Revised.

In order to compare the Accident Rates for the Alternatives/Alignments the following assumptions will be made: 1) Limited Access, Accident Rate of 0.60, Road Type 78; 2) Partial Control Access, Accident Rate of 0.89, Road Type 75, Alternative/Alignment C-Iwill be used as a BASE for the comparison as it would have the greatest number of field, residential, county road and commercial approaches associated with it. For the remainder of the 3 Alternative/Alignments carried forward the Base Accident Rate (MVM) will fall between 0.60-Limited Access and 0.89-Partial Control Access and will be prorated accordingly depending on the number of Total Turning Movements estimated for each Alternative/Alignment. The Road Types 75 and 78 are from the Current Idaho Transportation Department "Safety Evaluation Instruction Manual", Dated March 4, 1999, Page 31, Chart III-SEGMENT, b) RURAL.

BASE

Approach Type & No.			Est. No. Turns/Day			
(F)	Field	= 10	0.10			
(R)	Residential	= 24	10			
(CT)	County	= 7	200			
(C)	Commercial	= 14	100			
Total Turning Movements (TTM)			= (F x 0.1)+(R x 10)+(CT x 200)+(C x 100) = (10 x 0.1)+(24 x 10)+(7 x 200)+(14 x 100)			

(TTM) = 3041

Assume and Trees O. N.

3041/0.29 = 10,486 (Use this to calculate the Accident Adjustment Rate (AAR) for subsequent alignments)

NOTE: 0.29 is the Difference between 0.89-Accident Rate for Road Type-75 and 0.60-Accident Rate for Road Type-78 taken from ITD Safety Evaluation Instruction Manual and 3451 is the TOTAL ESTIMATED TURNING MOVEMENTS for C-1. (See Page 12 for calculation methodology.)

W-4

Approach Type & No.			Est. No. Turns/Day
(F)	Field	= 17	0.10
(R)	Residential	= 8	10
(CT)	County	= 4	200
(C)	Commercial	= 5	100

Total Turning Movements (TTM) = $(F \times 0.1)+(R \times 10)+(CT \times 200)+(C \times 100)$ = $(17 \times 0.1)+(8 \times 10)+(4 \times 200)+(5 \times 100)$ (TTM) = 1381.7

Adjusted Accident Rate (AAR) = 1381.7/10486 + 0.60 = **0.73 AAR**

ACCIDENTS/YEAR & COST of ACCIDENTS/YEAR

AVERAGE DAILY TRAFFIC = 6150 YEAR = 365 (days) LENGTH = 6.69 Miles ADJUSTED ACCIDENT RATE = 0.73

Million Vehicle Miles (MVM) = $\underline{ADT \times YEAR^{(DAYS)} \times LENGTH^{(MILES)}}$

1,000,000

 $= \underline{6150 \times 365 \times 6.69}$ 1,000,000

= 15.02 (MVM)

Accidents/Year (A/Y) = Accident Rate x MVM

 $= 0.73 \times 15.02$

= 10.96 (A/Y)

1.2% Fatal Accidents/Year (FA/Y) = 1.2% of 10.96 (A/Y)

Idaho Traffic Collisions-2003 = 0.13 FA/Y
ITD-Office of Highway Safety

Page 17-Table 10

37.7% Injury Accidents/Year (IA/Y) = 37.7% of 10.96 (A/Y)

Idaho Traffic Collisions-2003 = 4.13 IA/Y

ITD-Office of Highway Safety

Page 17-Table 10

ESTIMATED COST OF ACCIDENTS/YEAR

0.13 FA/Y @ \$3,129,653/Accident = \$407,000/Year 4.13 IA/Y @ \$282,873/Accident = \$1,168,000/Year

Idaho Traffic Collisions-2003 ITD-Office of Highway Safety

Page 8-Table 4

C-3

Appro	ach Type & N	<u>o.</u>	Est. No. Turns/Day
(F)	Field	= 10	0.10
(R)	Residential	= 11	10
(CT)	County	= 5	200
(C)	Commercial	= 15	100
Total Turning Movements (TTM) (TTM)			= $(F \times 0.1)+(R \times 10)+(CT \times 200)+(C \times 100)$ = $(10 \times 0.1)+(11 \times 10)+(5 \times 200)+(15 \times 100)$ f) = 2611
Adjust	ed Accident Ra	ate (AAR)	= 2611/10486 + 0.60 $= 0.85 AAR$

ACCIDENTS/YEAR & COST of ACCIDENTS/YEAR

AVERAGE DAILY TRAFFIC = 6150 YEAR = 365 (days) LENGTH = 5.9 Miles ADJUSTED ACCIDENT RATE = 0.85

Million Vehicle Miles (MVM) $= \underbrace{ADT \times YEAR^{(DAYS)} \times LENGTH^{(MILES)}}_{1,000,000}$ $= \underbrace{6150 \times 365 \times 5.9}_{1,000,000}$ = 13.24 (MVM) $= Accident Rate \times MVM$ $= 0.85 \times 13.24$ = 11.25 (A/Y)

1.2% Fatal Accidents/Year (FA/Y) = 1.2% of 11.25 (A/Y)

Idaho Traffic Collisions-2003 = 0.13 FA/Y

ITD-Office of Highway Safety

Page 17-Table 10

37.7% Injury Accidents/Year (IA/Y) = 37.7 % of 11.25 (A/Y)

Idaho Traffic Collisions-2003 = 4.24 IA/Y

ITD-Office of Highway Safety

Page 17-Table 10

ESTIMATED COST OF ACCIDENTS/YEAR

0.13 FA/Y @ \$3,129,653/Accident = \$407,000/Year 4.24 IA/Y @ \$282,873/Accident = \$1,200,000/Year Idaho Traffic Collisions-2003 ITD-Office of Highway Safety Page 8-Table 4

E-2

Approach Type & No.			Est. No. Turns/Day
(F)	Field	= 13	0.10
(R)	Residential	= 4	10
(CT)	County	= 2	200
(C)	Commercial	= 5	100

Total Turning Movements (TTM) = $(F \times 0.1)+(R \times 10)+(CT \times 200)+(C \times 100)$ = $(13 \times 0.1)+(4 \times 10)+(2 \times 200)+(5 \times 100)$ (TTM) = 941.3

Adjusted Accident Rate (AAR) = 941.3/10486 + 0.60 = 0.69 AAR

ACCIDENTS/YEAR & COST of ACCIDENTS/YEAR

AVERAGE DAILY TRAFFIC = 6150 YEAR = 365 (days) LENGTH = 5.85 Miles ADJUSTED ACCIDENT RATE = 0.69

Million Vehicle Miles (MVM) = $\underline{ADT} \times \underline{YEAR}^{(DAYS)} \times \underline{LENGTH}^{(MILES)}$

1,000,000

 $= \underline{6150 \times 365 \times 5.85}$ 1,000,000

= 13.13 (MVM)

Accidents/Year (A/Y) = Accident Rate x MVM

 $= 0.69 \times 13.13$

= 9.06 (A/Y)

1.2% Fatal Accidents/Year (FA/Y) = 1.2% of 9.06 (A/Y)

Idaho Traffic Collisions-2003 = 0.11 FA/Y

ITD-Office of Highway Safety

Page 17-Table 10

37.7% Injury Accidents/Year (IA/Y) = 37.7% of 9.06 (A/Y)

Idaho Traffic Collisions-2003 = 3.42 IA/Y

ITD-Office of Highway Safety

Page 17-Table 10

ESTIMATED COST OF ACCIDENTS/YEAR

0.11 FA/Y @ \$3,129,653/Accident = \$344,000/Year 3.42 IA/Y @ \$282,873/Accident = \$968,000/Year

Idaho Traffic Collisions-2003 ITD-Office of Highway Safety

Page 8-Table 4

EXISTING

ACCIDENT RATE = 1.63

(ITD Safety Evaluation Manual-Page 31, III. SEGMENT, b) RURAL, ROAD TYPE-45)

ACCIDENTS/YEAR & COST of ACCIDENTS/YEAR

AVERAGE DAILY TRAFFIC = 6150

YEAR = 365 (days) LENGTH = 5.9 Miles

ACCIDENT RATE = 1.63

Million Vehicle Miles (MVM) = $\underline{ADT} \times \underline{YEAR}^{(DAYS)} \times \underline{LENGTH}^{(MILES)}$

1,000,000

 $= \underline{6150 \times 365 \times 5.9} \\ 1,000,000$

= 13.24 (MVM)

Accidents/Year (A/Y) = Accident Rate x MVM

 $= 1.63 \times 13.24$

= 0.26 FA/Y

= 21.58 (A/Y)

1.2% Fatal Accidents/Year (FA/Y) = 1.2% of 21.58 (A/Y)

Idaho Traffic Collisions-2003

ITD-Office of Highway Safety

Page 17-Table 10

37.7% Injury Accidents/Year (IA/Y) = 37.7% of 21.58 (A/Y)

Idaho Traffic Collisions-2003 = 8.14 IA/Y

ITD-Office of Highway Safety Page 17-Table 10

ESTIMATED COST OF ACCIDENTS/YEAR

0.26 FA/Y @ \$3,129,653/Accident = \$814,000/Year 8.14 IA/Y @ \$282,873/Accident = \$2,303,000/Year

Idaho Traffic Collisions-2003 ITD-Office of Highway Safety

Page 8-Table 4

CALCULATION METHODOLOGY

To prorate the accident rate for the various alternatives/alignments the following proportion was used:

 $\frac{TTMx}{3041} = \frac{ARx}{0.29}$

Where:

TTMx is the total turning movements estimated for each alternatives/alignments.

3041 is the TTM for the base alignment which represents Road Type 75 and an accident rate of 0.89.

ARx is the accident rate variation.

0.29 is the total accident rate variation between Road Types 75 and 78. (Accident Rates of 0.89 and 0.60 respectively)

THE EQUATION CAN BE REDUCED TO THE FOLLOWING:

 $\frac{TTMx}{10,486} = ARx$

ARx is then added to the Base Accident Rate of 0.60 for Road Type 78.

Reference: Transportation Research Record 2171;

"Unsignalized access spacing influences roadway safety. Increased access spacing provides greater separation between conflict points and simplifies turning maneuvers. This, in turn, generally leads to fewer crashes and lower vehicle delay. From a review of corridor access studies, Gluck et al. found that increasing access density from 10 to 20 accesses per mile increased the crash rate by 30%-40% while an increase to 40 accesses per mile increased crash rates by about 60% "(Gluck, J., H.S. Levinson, and V. Stover. NCHRP Report 420)

CLIMATE AND WILDLIFE SAFETY ANALYSIS

In November 2007, the Federal Highway Administration (FHWA) performed a review and made comment on the Safety Study prepared for the Thorncreek Road to Moscow DEIS. Based upon that review, the FHWA instructed the ITD to integrate an analysis of wildlife/vehicle collisions and climate affects into the safety evaluation prepared for the project. The following is a summary of those analyses. To review the assessments in full, go the ITD project website

Summary: Climate / Safety Analysis:

The observed and estimated weather-related accident potential associated with the road alignment characteristics of slope and radius of horizontal curvature for the existing US Highway 95 between Thorncreek Road and Moscow, Idaho, and three proposed alternative routes have been compared. The cumulative weather-related accident potential associated with the weather which occurred between 1999-2003 were 15.6 accidents per year for the existing US95, 10.1 accidents per year for W-4, 8.6 for C-3 and 8.1 for E-2. The three alternative routes all have a lower weather-related accident potential than does the existing US 95, ranging from one-third (W-4) to nearly 50% (E-2) less accident potential. This reduced accident potential is achieved by incorporation of design standards that reduce the slopes and lengthen the radii of horizontal curvature of the alternative routes compared to the existing US 95.

A comparison of the three proposed alternative routes shows alternative W-4 to have distinctly higher accident potential than either C-3 or E-2. Between the latter two alternatives, E-2 may have slightly lower accident potential than C-3 owing to the fact that the radii of curvature on E-2 were more consistently longer than those on alternative C-3, and curve radius is the most influential factor affecting weather-related accident potential.

Summary: Wildlife / Safety Analysis:

Because vehicle-wildlife collisions are directly related to motorist safety, the Eastern alignment (E-2) would rank lowest in motorist safety due to its proximity to year-round habitat on Paradise Ridge. Likewise, based on the above segment review and distance from good ungulate habitat, the Western alignment (W-4) would be safest for motorists. However, taken in perspective, 16 accident reports involving wild animals (presumably large mammals) on US 95 between Thorncreek Road and Moscow over a 4-year period is not significant. Many other stretches of US 95 and other highways in Idaho have that number of ungulate road-kills in a single season, or even month.

Appendix E

Safety Evaluation For Western Ecosystems Technology's
Assessment of Potential Big Game Impacts Associated
with Highway Alternative from Thorncreek Road to
Moscow

ITD 0500 (Rev.10-07)

Department Memorandum

Idaho Transportation Department

DATE: DECEMBER 9, 2010

Program Number(s) P042040

TO:

KENNETH G. HELM

SENIOR TRANSPORTATION PLANNER

Key Number(s)

9294

FROM: DAVID P. COUCH, P.E. TRAFFIC ENGINEER

Program ID, County, Etc. THORNCREEK

ROAD TO MOSCOW

RE:

SAFETY EVALUATION FOR WESTERN ECOSYSTEMS TECHNOLOGY'S

ASSESSMENT OF POTENTIAL BIG GAME IMPACTS ASSOCIATED WITH HIGHWAY

ALTERNATIVE FROM THORNCREEK ROAD TO MOSCOW

The Idaho Transportation Department (ITD) maintains a Crash Analysis Report System (CARS), which is compiled from Vehicle Crash Reports, and a High Accident Location (HAL) reporting system. For the purposes of this analysis, ITD has applied the HAL methodology to the CARS database, as means to monitor the frequency and severity of wild animal/vehicle collisions on the Thorncreek Road to Moscow project segment of US-95. ITD has implemented the proposed monitoring as follows:

A Vehicle Crash Report (VCR) shall be filled out for every crash that involves a motor vehicle which occurs within highway right-of-way and results in more than \$1,500 (\$750 before January 1, 2006) property damage for any one person involved in the crash, or results in an injury to any person involved. All law enforcement agencies in Idaho are required by Idaho Code to send the VCR reports to the Office of Highway Safety and ITD. This data is compiled into the CARS database.

The HAL program produces several reports annually. The primary reports are the interstate segment report, the interstate-interchange report, the noninterstate segment report, and the noninterstate intersection report. The HAL program uses a crash frequency and severity methodology to identify problem road segments. To identify high crash roadway sections within the Thorncreek Road to Moscow Segment of US-95, the HAL program uses nonintersection related crashes in a clustering process to identify highway segments that have a history of crashes. The HAL program analyzes all reportable crashes in which an injury or property damage occurs.

The ITD will apply the HAL methodology to the highway segment of the Thorncreek Road to Moscow project. If, at any time, the Thorncreek Road to Moscow project has a roadway segment which becomes listed under the HAL criteria due to repetitive wild animal/vehicle collisions, ITD will correct the problem by implementing corrective maintenance measures, or by initiating a safety improvement project, to reduce crashes. Such measures or projects could include vegetation removal, game crossing warning signing, fencing, installation of wildlife detection system(s) and slope design changes adjacent to that section of US-95.

CONTINUED...

KENNETH G. HELM SENIOR TRANSPORTATION PLANNER DECEMBER 9, 2010 PAGE TWO

Currently, a review of crash data from 2004 through 2008 crash records indicate there were 12 property damage only and three Type "C" nonevident injury crashes which occurred in the Thorncreek Road to Moscow segment of U.S. 95 as a result of wild animal/vehicle collisions. These 15 wild animal/vehicle crashes represent 12.8% of the total 117 crashes that were reported along the referenced segment of U.S. 95 during the 2004 - 2008 time periods. To mitigate for the potential for wild animal/vehicle collisions, the design of the new highway will straighten and flatten curves and slopes and provide wide shoulders for emergency/avoidance maneuvers. Based on existing crash reports, the low frequency and randomness of animal collisions and the flatter more open characteristics of the proposed roadway section, animal crashes are not anticipated to be a significant motorist safety concern.

5 YE	AR WILD AN	VIMAL/VEI	ICLE CRA	SH SUMMAI	R Y 2004 – 20	08
YEAR	TOTAL Animal/ Vehicle Collision s	No. Fatal Accidents	A Injury Accidents	B Injury Accidents	C Injury Accidents	Property Damage Only
2004	3	0	0	0	1	2
2005	5	0	0	0	1	4
2006	1	0	0	0	0	1
2007	3	0	0	0	1	2
2008	3	0	0	0	0	3
TOTALS	15	0	0	0	3	12

- Fatality: Dead at the scene as a result of the accident
- A-Injury Accident: Any incapacitating injury, other than fatal, which prevents the injured person from walking, driving or continuing normal activities.
- B-Injury Accident: Any evident but nonincapacitating injury which is evident to observers at the scene of the accident
- C-Injury Accident: Any nonevident injury/complaint reported or claimed which does not fall
 in the injury categories.
- Report Criteria: U.S. 95, Segment code 001540; MP 337.189 344.004

References:

Idaho Transportation Department. High Accident Location Report Methodology.

Idaho Transportation Department. Crash Analysis Report System.

Idaho Transportation Department. Idaho Police Accident Report Form Manual.

DPC:SS:ss/2.\admin\om\wrdfiles\adm\9294 Safety Metho.dock

CC:

DE2

PDE2

DTE2

EPS